Design Space Extrapolation for Power Delivery Networks using a Transposed Convolutional Net

O. W. Bhatti, M. Swaminathan
{"title":"Design Space Extrapolation for Power Delivery Networks using a Transposed Convolutional Net","authors":"O. W. Bhatti, M. Swaminathan","doi":"10.1109/ISQED51717.2021.9424309","DOIUrl":null,"url":null,"abstract":"The geometrical and material properties of distributed electromagnetic structures comprise the design space. This space characterizes the structure’s frequency response in complex domain. In this paper, we propose a machine learning framework for predicting frequency response of a power delivery network as a function of its extrapolated multidimensional geometrical and material parameters. The proposed approach comprises of an ensemble of architectures: (1) Fully Connected Upsampler for latent code generation (2) Convolutional Decoder to learn the frequency response from the latent code. The 14D design space is converted to a Lth dimensional code which entails the frequency response information. With the proposed architecture, a root mean squared error of 0.004 ohms is achieved when compared to the true value. We focus on extrapolation of design space parameters while training on in-band values. We also illustrate how frequency poles move with varying design space exploiting parameter sensitivity in different frequency bands.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The geometrical and material properties of distributed electromagnetic structures comprise the design space. This space characterizes the structure’s frequency response in complex domain. In this paper, we propose a machine learning framework for predicting frequency response of a power delivery network as a function of its extrapolated multidimensional geometrical and material parameters. The proposed approach comprises of an ensemble of architectures: (1) Fully Connected Upsampler for latent code generation (2) Convolutional Decoder to learn the frequency response from the latent code. The 14D design space is converted to a Lth dimensional code which entails the frequency response information. With the proposed architecture, a root mean squared error of 0.004 ohms is achieved when compared to the true value. We focus on extrapolation of design space parameters while training on in-band values. We also illustrate how frequency poles move with varying design space exploiting parameter sensitivity in different frequency bands.
基于转置卷积网络的输电网络空间外推设计
分布式电磁结构的几何特性和材料特性构成了设计空间。这个空间表征了结构在复域中的频率响应。在本文中,我们提出了一个机器学习框架,用于预测电力输送网络的频率响应,作为其外推的多维几何和材料参数的函数。所提出的方法包括以下架构:(1)用于潜在代码生成的全连接上采样器(2)用于从潜在代码中学习频率响应的卷积解码器。将14D设计空间转换为包含频率响应信息的Lth维代码。采用所提出的结构,与真实值相比,均方根误差为0.004欧姆。我们专注于设计空间参数的外推,同时训练带内值。我们还说明了频率极点如何随着不同设计空间的变化而移动,利用不同频段的参数灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信