Decision Guidance for Optimizing Web Data Quality - A Recommendation Model for Completing Information Extraction Results

C. Feilmayr
{"title":"Decision Guidance for Optimizing Web Data Quality - A Recommendation Model for Completing Information Extraction Results","authors":"C. Feilmayr","doi":"10.1109/DEXA.2013.17","DOIUrl":null,"url":null,"abstract":"Incomplete information in web intelligence applications has serious consequences: inaccurate statements predominate, resulting primarily in erroneous annotations and ultimately in inaccurate reasoning on the web. This research work focuses on improving the completeness of extraction results by applying judiciously selected assessment methods to information extraction within the principle of complementarity. On the one hand, this paper discusses several requirements an assessment method must meet in terms of process ability and profitability to guarantee effective operation in a complementarity approach. On the other hand, it proposes a recommendation model to guide an IE system designer in selecting the appropriate methods for optimizing web data quality. The paper concludes with an application scenario that supports the theoretical approach.","PeriodicalId":428515,"journal":{"name":"2013 24th International Workshop on Database and Expert Systems Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 24th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2013.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Incomplete information in web intelligence applications has serious consequences: inaccurate statements predominate, resulting primarily in erroneous annotations and ultimately in inaccurate reasoning on the web. This research work focuses on improving the completeness of extraction results by applying judiciously selected assessment methods to information extraction within the principle of complementarity. On the one hand, this paper discusses several requirements an assessment method must meet in terms of process ability and profitability to guarantee effective operation in a complementarity approach. On the other hand, it proposes a recommendation model to guide an IE system designer in selecting the appropriate methods for optimizing web data quality. The paper concludes with an application scenario that supports the theoretical approach.
优化Web数据质量的决策指南——完成信息提取结果的推荐模型
在web智能应用中,不完整的信息会带来严重的后果:不准确的陈述占主导地位,主要导致错误的注释,最终导致web上不准确的推理。本研究的重点是在互补性原则下,通过合理选择评估方法进行信息提取,提高提取结果的完整性。一方面,本文讨论了一种评估方法在过程能力和盈利能力方面必须满足的几个要求,以保证互补方法的有效运行。另一方面,提出了一个推荐模型来指导IE系统设计者选择合适的方法来优化web数据质量。最后给出了一个支持理论方法的应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信