SLAM algorithm with parallel localization loops: TinySLAM 1.1

O. Hamzaoui, B. Steux
{"title":"SLAM algorithm with parallel localization loops: TinySLAM 1.1","authors":"O. Hamzaoui, B. Steux","doi":"10.1109/ICAL.2011.6024699","DOIUrl":null,"url":null,"abstract":"This paper presents the tinySLAM algorithm, which enables a mobile robot to perform automatic localization and mapping, called SLAM. Indeed, it is one of the essential bricks to build an autonomous robot that can evolve in an unknown environment. Several methods and algorithms have been developed to solve this problem, using various techniques and sensors. TinySLAM is a SLAM algorithm based on the principle of IML (Incremental Maximum Likelihood). It uses data from a laser sensor to estimate the most probable position of the robot in a 2D map. We have worked extensively on improving the computation speed of this estimate. Results obtained allowed us to run two loops of position estimation in parallel, with different characteristics. The algorithm has a better chance to find a good estimate of the position. In previous work, we presented a first version of this algorithm. This paper talks about the advances made in improving the tinySLAM algorithm, until version 1.1.","PeriodicalId":351518,"journal":{"name":"2011 IEEE International Conference on Automation and Logistics (ICAL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation and Logistics (ICAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2011.6024699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents the tinySLAM algorithm, which enables a mobile robot to perform automatic localization and mapping, called SLAM. Indeed, it is one of the essential bricks to build an autonomous robot that can evolve in an unknown environment. Several methods and algorithms have been developed to solve this problem, using various techniques and sensors. TinySLAM is a SLAM algorithm based on the principle of IML (Incremental Maximum Likelihood). It uses data from a laser sensor to estimate the most probable position of the robot in a 2D map. We have worked extensively on improving the computation speed of this estimate. Results obtained allowed us to run two loops of position estimation in parallel, with different characteristics. The algorithm has a better chance to find a good estimate of the position. In previous work, we presented a first version of this algorithm. This paper talks about the advances made in improving the tinySLAM algorithm, until version 1.1.
具有并行定位循环的SLAM算法:TinySLAM 1.1
本文提出了一种能够使移动机器人进行自动定位和绘图的算法,称为SLAM。事实上,它是构建能够在未知环境中进化的自主机器人的基本要素之一。已经开发了几种方法和算法来解决这个问题,使用各种技术和传感器。TinySLAM是一种基于IML (Incremental Maximum Likelihood)原理的SLAM算法。它使用来自激光传感器的数据来估计机器人在2D地图上最可能的位置。我们在提高这个估计的计算速度方面做了大量的工作。得到的结果使我们能够以不同的特性并行运行两个位置估计循环。该算法有更好的机会找到一个好的位置估计。在之前的工作中,我们提出了该算法的第一个版本。本文讨论了tinySLAM算法在1.1版之前的改进进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信