Deep Learning Method for Prediction of Planar Radiating Sources from Near-Field Intensity Data

Hanzhi Ma, Erping Li, J. Schutt-Ainé, A. Cangellaris
{"title":"Deep Learning Method for Prediction of Planar Radiating Sources from Near-Field Intensity Data","authors":"Hanzhi Ma, Erping Li, J. Schutt-Ainé, A. Cangellaris","doi":"10.1109/ISEMC.2019.8825271","DOIUrl":null,"url":null,"abstract":"A deep learning method, cascaded convolutional neural networks, is investigated as a means for the prediction of frequency-dependent intensity distribution of planar radiating sources from frequency-dependent, near-field intensity data. More specifically, two convolutional neural networks are utilized as follows. The first one uses as input the available near-field amplitude data to predict the amplitude and phase of radiated fields on a plane in closer proximity to the radiating sources. Using the obtained distribution as input, the second one estimates the intensity of the planar radiating sources. The proposed method exhibits very good accuracy in the prediction of the radiating source distribution over the frequency range used for the training of the convolutional neural networks.","PeriodicalId":137753,"journal":{"name":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2019.8825271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A deep learning method, cascaded convolutional neural networks, is investigated as a means for the prediction of frequency-dependent intensity distribution of planar radiating sources from frequency-dependent, near-field intensity data. More specifically, two convolutional neural networks are utilized as follows. The first one uses as input the available near-field amplitude data to predict the amplitude and phase of radiated fields on a plane in closer proximity to the radiating sources. Using the obtained distribution as input, the second one estimates the intensity of the planar radiating sources. The proposed method exhibits very good accuracy in the prediction of the radiating source distribution over the frequency range used for the training of the convolutional neural networks.
基于近场强度数据的平面辐射源预测深度学习方法
研究了一种深度学习方法——级联卷积神经网络,用于从频率相关的近场强度数据中预测平面辐射源的频率相关强度分布。更具体地说,使用两个卷积神经网络如下。第一种方法使用可用的近场振幅数据作为输入,在较接近辐射源的平面上预测辐射场的振幅和相位。第二种方法利用得到的分布作为输入,估计平面辐射源的强度。该方法在卷积神经网络训练的频率范围内对辐射源分布的预测具有很好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信