Visual-Tactile Fusion for Robotic Stable Grasping

Fang Bin, Chao Yang, Sun Fuchun, Liu Huaping
{"title":"Visual-Tactile Fusion for Robotic Stable Grasping","authors":"Fang Bin, Chao Yang, Sun Fuchun, Liu Huaping","doi":"10.5772/intechopen.91455","DOIUrl":null,"url":null,"abstract":"The stable grasp is the basis of robotic manipulation. It requires balance of the contact forces and the operated object. The status of the grasp determined by vision is direct according to the object ’ s shape or texture, but quite challenging. The tactile sensor can provide the effective way. In this work, we propose the visual-tactile fusion framework for predicting the grasp. Meanwhile, the object intrinsic property is also used. More than 2550 grasping trials using a novel robot hand with multiple tactile sensors are collected. And visual-tactile intrinsic deep neural network (DNN) is evaluated to prove the performance. The experimental results show the superiority of the proposed method.","PeriodicalId":361129,"journal":{"name":"Industrial Robotics - New Paradigms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robotics - New Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The stable grasp is the basis of robotic manipulation. It requires balance of the contact forces and the operated object. The status of the grasp determined by vision is direct according to the object ’ s shape or texture, but quite challenging. The tactile sensor can provide the effective way. In this work, we propose the visual-tactile fusion framework for predicting the grasp. Meanwhile, the object intrinsic property is also used. More than 2550 grasping trials using a novel robot hand with multiple tactile sensors are collected. And visual-tactile intrinsic deep neural network (DNN) is evaluated to prove the performance. The experimental results show the superiority of the proposed method.
机器人稳定抓取的视觉触觉融合
稳定的抓取是机器人操作的基础。它要求接触力和被操作物体的平衡。视觉判断抓取的状态是直接根据物体的形状或纹理来确定的,但具有一定的挑战性。触觉传感器可以提供有效的方法。在这项工作中,我们提出了视觉-触觉融合框架来预测抓取。同时,也利用了对象的内在属性。采用具有多个触觉传感器的新型机械手进行了2550多次抓取试验。并对视觉-触觉内在深度神经网络(DNN)进行了评价以验证其性能。实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信