Indonesia ancient temple classification using convolutional neural network

Kefin Pudi Danukusumo, Pranowo, Martinus Maslim
{"title":"Indonesia ancient temple classification using convolutional neural network","authors":"Kefin Pudi Danukusumo, Pranowo, Martinus Maslim","doi":"10.1109/ICCEREC.2017.8226709","DOIUrl":null,"url":null,"abstract":"This paper describes the use of convolutional neural network(CNN) method to classify various image and photo of Indonesia ancient temple. The method itself implements Deep Learning technique designed for Computer Vision task. The idea behind CNN is image pre-processing through a stack of convolution layers to create many patterns that can be easily recognized. The result shows that the learning model has an accuracy of 98,99% on the training set and accuracy of 85.57% on the test set. With GPU performance, the time used to train the model is 389.14 seconds.","PeriodicalId":328054,"journal":{"name":"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2017.8226709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes the use of convolutional neural network(CNN) method to classify various image and photo of Indonesia ancient temple. The method itself implements Deep Learning technique designed for Computer Vision task. The idea behind CNN is image pre-processing through a stack of convolution layers to create many patterns that can be easily recognized. The result shows that the learning model has an accuracy of 98,99% on the training set and accuracy of 85.57% on the test set. With GPU performance, the time used to train the model is 389.14 seconds.
利用卷积神经网络对印尼古庙进行分类
本文描述了使用卷积神经网络(CNN)方法对印度尼西亚古庙的各种图像和照片进行分类。该方法本身实现了为计算机视觉任务设计的深度学习技术。CNN背后的想法是通过一堆卷积层对图像进行预处理,以创建许多易于识别的模式。结果表明,该学习模型在训练集上的准确率为98.99%,在测试集上的准确率为85.57%。在GPU性能下,模型的训练时间为389.14秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信