A 4.45 ms Low-Latency 3D Point-Cloud-Based Neural Network Processor for Hand Pose Estimation in Immersive Wearable Devices

Dongseok Im, Sanghoon Kang, Donghyeon Han, Sungpill Choi, H. Yoo
{"title":"A 4.45 ms Low-Latency 3D Point-Cloud-Based Neural Network Processor for Hand Pose Estimation in Immersive Wearable Devices","authors":"Dongseok Im, Sanghoon Kang, Donghyeon Han, Sungpill Choi, H. Yoo","doi":"10.1109/vlsicircuits18222.2020.9162895","DOIUrl":null,"url":null,"abstract":"A 3D point-cloud-based neural network (PNN) processor is proposed for the low-latency hand pose estimation (HPE) system. The processor adopts the heterogeneous core architecture to accelerate both convolution layers (CLs) and sampling-grouping layers (SGLs). The proposed window-based sampling-grouping (WSG) directly samples and groups the 3D points from the streaming depth image to boost up the throughput by ×2.34. Furthermore, the max pooling prediction (MPP) predicts the 64- and 128-to-1 max pooling outputs with ×1.31 throughput enhancement. In addition, the tiled data based MPP (TMPP) performs the MPP with the tiled input data to hide the latency of the MPP. As a result, the processor achieves 4.45 ms latency on the HPE system.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsicircuits18222.2020.9162895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A 3D point-cloud-based neural network (PNN) processor is proposed for the low-latency hand pose estimation (HPE) system. The processor adopts the heterogeneous core architecture to accelerate both convolution layers (CLs) and sampling-grouping layers (SGLs). The proposed window-based sampling-grouping (WSG) directly samples and groups the 3D points from the streaming depth image to boost up the throughput by ×2.34. Furthermore, the max pooling prediction (MPP) predicts the 64- and 128-to-1 max pooling outputs with ×1.31 throughput enhancement. In addition, the tiled data based MPP (TMPP) performs the MPP with the tiled input data to hide the latency of the MPP. As a result, the processor achieves 4.45 ms latency on the HPE system.
用于沉浸式可穿戴设备手部姿势估计的4.45 ms低延迟3D点云神经网络处理器
提出了一种基于三维点云的神经网络(PNN)处理器,用于低延迟手部姿态估计系统。该处理器采用异构核架构,对卷积层和采样分组层都进行了加速。提出的基于窗口的采样分组(WSG)直接对流深度图像中的三维点进行采样和分组,以提高×2.34的吞吐量。此外,最大池预测(MPP)通过×1.31吞吐量增强预测64和128对1的最大池输出。此外,基于平铺数据的MPP (TMPP)采用平铺输入数据来执行MPP,以隐藏MPP的延迟。因此,处理器在HPE系统上实现了4.45 ms的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信