{"title":"A Novel Adaptive Protective Scheme For the Single-Phase Earth Fault of the Non-Effectively Grounded Power Systems","authors":"Xiangning Lin, Xiaofei Ma, Weng Hanli, Wenjun Lu, Qing Tian","doi":"10.1109/ICPST.2006.321947","DOIUrl":null,"url":null,"abstract":"The fault current of the faulty feeder is quite low when a single-phase earth fault occurs on a neutral un-effectively grounded grid. The accurate identification of the faulty feeder becomes a difficult task due to many disadvantageous factors. The conventional scheme is implemented with the comparison of the magnitude, polarity or the phase angle among the zero-sequence currents. Therefore, it is hard to be implemented into the feeder protection equipped on the FTU. A novel zero-sequence over-voltage protection scheme based on zero-sequence current compensation is therefore proposed. The fundamental method is based on the measurement of the zero-sequence over-voltage, and the tripping time characteristic adopts the inverse time delay. By virtue of the analysis of distribution of the zero-sequence transient current, a transient RMS value of the zero-sequence current is utilized to form the composite compensation voltage together with zero-sequence voltage. This voltage is utilized to revise the inverse time-delay curve to achieve the selectivity of the protection. The principle is verified with the EMTP simulator.","PeriodicalId":181574,"journal":{"name":"2006 International Conference on Power System Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Power System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST.2006.321947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The fault current of the faulty feeder is quite low when a single-phase earth fault occurs on a neutral un-effectively grounded grid. The accurate identification of the faulty feeder becomes a difficult task due to many disadvantageous factors. The conventional scheme is implemented with the comparison of the magnitude, polarity or the phase angle among the zero-sequence currents. Therefore, it is hard to be implemented into the feeder protection equipped on the FTU. A novel zero-sequence over-voltage protection scheme based on zero-sequence current compensation is therefore proposed. The fundamental method is based on the measurement of the zero-sequence over-voltage, and the tripping time characteristic adopts the inverse time delay. By virtue of the analysis of distribution of the zero-sequence transient current, a transient RMS value of the zero-sequence current is utilized to form the composite compensation voltage together with zero-sequence voltage. This voltage is utilized to revise the inverse time-delay curve to achieve the selectivity of the protection. The principle is verified with the EMTP simulator.