Predicting Status of Pre and Post M&A Deals Using Machine Learning and Deep Learning Techniques

T. Karatas, Ali Hirsa
{"title":"Predicting Status of Pre and Post M&A Deals Using Machine Learning and Deep Learning Techniques","authors":"T. Karatas, Ali Hirsa","doi":"10.2139/ssrn.3923065","DOIUrl":null,"url":null,"abstract":"Risk arbitrage or merger arbitrage is a well-known investment strategy that speculates on the success of M&A deals. Prediction of the deal status in advance is of great importance for risk arbitrageurs. If a deal is mistakenly classified as a completed deal, then enormous cost can be incurred as a result of investing in target company shares. On the contrary, risk arbitrageurs may lose the opportunity of making profit. In this paper, we present an ML and DL based methodology for takeover success prediction problem. We initially apply various ML techniques for data preprocessing such as kNN for data imputation, PCA for lower dimensional representation of numerical variables, MCA for categorical variables, and LSTM autoencoder for sentiment scores. We experiment with different cost functions, different evaluation metrics, and oversampling techniques to address class imbalance in our dataset. We then implement feedforward neural networks to predict the success of the deal status. Our preliminary results indicate that our methodology outperforms the benchmark models such as logit and weighted logit models. We also integrate sentiment scores into our methodology using different model architectures, but our preliminary results show that the performance is not changing much compared to the simple FFNN framework. We will explore different architectures and employ a thorough hyperparameter tuning for sentiment scores as a future work.","PeriodicalId":416026,"journal":{"name":"Econometric Modeling: Corporate Finance & Governance eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Corporate Finance & Governance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3923065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Risk arbitrage or merger arbitrage is a well-known investment strategy that speculates on the success of M&A deals. Prediction of the deal status in advance is of great importance for risk arbitrageurs. If a deal is mistakenly classified as a completed deal, then enormous cost can be incurred as a result of investing in target company shares. On the contrary, risk arbitrageurs may lose the opportunity of making profit. In this paper, we present an ML and DL based methodology for takeover success prediction problem. We initially apply various ML techniques for data preprocessing such as kNN for data imputation, PCA for lower dimensional representation of numerical variables, MCA for categorical variables, and LSTM autoencoder for sentiment scores. We experiment with different cost functions, different evaluation metrics, and oversampling techniques to address class imbalance in our dataset. We then implement feedforward neural networks to predict the success of the deal status. Our preliminary results indicate that our methodology outperforms the benchmark models such as logit and weighted logit models. We also integrate sentiment scores into our methodology using different model architectures, but our preliminary results show that the performance is not changing much compared to the simple FFNN framework. We will explore different architectures and employ a thorough hyperparameter tuning for sentiment scores as a future work.
利用机器学习和深度学习技术预测并购交易前后的状态
风险套利或并购套利是一种众所周知的投资策略,其目的是对并购交易的成功进行投机。对于风险套利者来说,提前预测交易状态是非常重要的。如果一笔交易被错误地归类为已完成的交易,那么由于投资目标公司的股票,可能会产生巨大的成本。相反,风险套利者可能会失去获利的机会。本文提出了一种基于机器学习和深度学习的收购成功预测方法。我们最初应用各种ML技术进行数据预处理,如kNN用于数据输入,PCA用于数值变量的低维表示,MCA用于分类变量,LSTM自动编码器用于情绪评分。我们尝试了不同的成本函数、不同的评估指标和过采样技术来解决数据集中的类不平衡问题。然后,我们实现了前馈神经网络来预测交易的成功状态。我们的初步结果表明,我们的方法优于基准模型,如logit和加权logit模型。我们还使用不同的模型架构将情绪得分集成到我们的方法中,但我们的初步结果表明,与简单的FFNN框架相比,性能没有太大变化。我们将探索不同的架构,并在未来的工作中对情绪评分进行彻底的超参数调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信