Non-parametric smoothing for relative radiometric correction on remotely sensed data

M. Velloso, F. J. Souza
{"title":"Non-parametric smoothing for relative radiometric correction on remotely sensed data","authors":"M. Velloso, F. J. Souza","doi":"10.1109/SIBGRA.2002.1167128","DOIUrl":null,"url":null,"abstract":"Digital change detection methods have been broadly divided into either pre-classification spectral change detection or post-classification change detection. Since all spectral change detection methods are based on pixel-wise operations, or scene-wise plus pixel-wise operations, accuracy in image registration and scene-to-scene radiometric normalization is more critical for these methods than for other methods. A wide range of algorithms has been developed to adjust linear models. This paper proposes an automated radiometric normalization process that automatically extracts the training dataset, and uses a non-parametric smoother to adjust a non-linear mapping in order to minimize the effects of the influences of radiometric differences on image interpretation and classification. In order to investigate how the proposed normalization improves the performance classification, and assess the effectiveness of this technique, we carried out classification experiments on three image sets, and compare their results.","PeriodicalId":286814,"journal":{"name":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.2002.1167128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Digital change detection methods have been broadly divided into either pre-classification spectral change detection or post-classification change detection. Since all spectral change detection methods are based on pixel-wise operations, or scene-wise plus pixel-wise operations, accuracy in image registration and scene-to-scene radiometric normalization is more critical for these methods than for other methods. A wide range of algorithms has been developed to adjust linear models. This paper proposes an automated radiometric normalization process that automatically extracts the training dataset, and uses a non-parametric smoother to adjust a non-linear mapping in order to minimize the effects of the influences of radiometric differences on image interpretation and classification. In order to investigate how the proposed normalization improves the performance classification, and assess the effectiveness of this technique, we carried out classification experiments on three image sets, and compare their results.
遥感数据相对辐射校正的非参数平滑
数字变化检测方法大致分为前分类光谱变化检测和后分类光谱变化检测。由于所有的光谱变化检测方法都是基于逐像素操作,或者逐场景加逐像素操作,因此图像配准和场景到场景辐射归一化的准确性对这些方法来说比其他方法更为关键。已经开发了各种各样的算法来调整线性模型。本文提出了一种自动提取训练数据集的自动化辐射归一化过程,并使用非参数平滑器对非线性映射进行调整,以尽量减少辐射差异对图像判读和分类的影响。为了研究提出的归一化方法如何提高分类性能,并评估该方法的有效性,我们在三个图像集上进行了分类实验,并比较了它们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信