An Automatic Active Contour Approach to Segment Retinal Blood Vessels

Isabella Poles, E. D’Arnese, M. Santambrogio
{"title":"An Automatic Active Contour Approach to Segment Retinal Blood Vessels","authors":"Isabella Poles, E. D’Arnese, M. Santambrogio","doi":"10.1109/rtsi50628.2021.9597338","DOIUrl":null,"url":null,"abstract":"Assessment of the blood vessel morphology in retinal fundus images is an indispensable method to diagnose diseases such as diabetic retinopathy and glaucoma. Ophthalmologists commonly evaluate fundus images with manual planimetry vessel extraction, which represents a clear bottleneck and is prone to human errors. Therefore, an automatic vessel segmentation tool can help clinicians perform this task, thus, improving the accuracy of the diagnosis. This work proposes a fully automatic segmentation framework based on the Chan-Vese active contouring algorithm for defining blood vessels in retinal images enhanced by matched filtering. Moreover, custom pre-processing workflows facilitate the subsequent segmentation depending on the analyzed images' intensity-based characteristics. The effectiveness of the proposed method was evaluated on the benchmark dataset STARE. Our framework outputs resemble much closer the ground truth images than other segmentation strategies, achieving an average accuracy of 94.37% and a Dice Similarity Coefficient of 0.7441.","PeriodicalId":294628,"journal":{"name":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtsi50628.2021.9597338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assessment of the blood vessel morphology in retinal fundus images is an indispensable method to diagnose diseases such as diabetic retinopathy and glaucoma. Ophthalmologists commonly evaluate fundus images with manual planimetry vessel extraction, which represents a clear bottleneck and is prone to human errors. Therefore, an automatic vessel segmentation tool can help clinicians perform this task, thus, improving the accuracy of the diagnosis. This work proposes a fully automatic segmentation framework based on the Chan-Vese active contouring algorithm for defining blood vessels in retinal images enhanced by matched filtering. Moreover, custom pre-processing workflows facilitate the subsequent segmentation depending on the analyzed images' intensity-based characteristics. The effectiveness of the proposed method was evaluated on the benchmark dataset STARE. Our framework outputs resemble much closer the ground truth images than other segmentation strategies, achieving an average accuracy of 94.37% and a Dice Similarity Coefficient of 0.7441.
一种自动主动轮廓法分割视网膜血管
对视网膜眼底图像中的血管形态进行评估是诊断糖尿病视网膜病变、青光眼等疾病不可缺少的方法。眼科医生通常使用人工平面血管提取来评估眼底图像,这是一个明显的瓶颈,容易出现人为错误。因此,自动血管分割工具可以帮助临床医生完成这项任务,从而提高诊断的准确性。本文提出了一种基于Chan-Vese主动轮廓算法的全自动分割框架,用于通过匹配滤波增强视网膜图像中的血管定义。此外,自定义预处理工作流有助于根据分析图像的基于强度的特征进行后续分割。在基准数据集STARE上对该方法的有效性进行了评价。我们的框架输出比其他分割策略更接近地面真实图像,平均准确率为94.37%,骰子相似系数为0.7441。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信