Segmentation of MRI brain images by incorporating intensity inhomogeneity and spatial information using probabilistic fuzzy c-means clustering algorithm

S. Adhikari, J. Sing, D. K. Basu, M. Nasipuri, P. Saha
{"title":"Segmentation of MRI brain images by incorporating intensity inhomogeneity and spatial information using probabilistic fuzzy c-means clustering algorithm","authors":"S. Adhikari, J. Sing, D. K. Basu, M. Nasipuri, P. Saha","doi":"10.1109/CODIS.2012.6422153","DOIUrl":null,"url":null,"abstract":"Segmentation of magnetic resonance imaging (MRI) brain images is an important task to analyze tissue structures of a human brain. Due to improper image acquisition systems, MRI images are generally corrupted by intensity inhomogeneity (IIH) or intensity nonuniformity (INU). Conventional methods try to segment MRI images using only spatial information about the distribution of pixel intensities and are highly sensitive to noise and the IIH or INU. This paper presents a method to segment MRI brain images by considering the INU and spatial information using fuzzy C-means (FCM) clustering algorithm. Firstly, the INU of MRI brain image is corrected using fusion of Gaussian surfaces. The individual Gaussian surface is estimated independently over the different homogeneous regions by considering its center as the center of mass of the respective homogeneous region. Secondly, the IIH corrected image is segmented using probabilistic FCM algorithm, which considers spatial features of image pixels. The experiments using 3D synthetic phantoms and real-patient MRI brain images reveal that the proposed method performs satisfactorily.","PeriodicalId":274831,"journal":{"name":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODIS.2012.6422153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Segmentation of magnetic resonance imaging (MRI) brain images is an important task to analyze tissue structures of a human brain. Due to improper image acquisition systems, MRI images are generally corrupted by intensity inhomogeneity (IIH) or intensity nonuniformity (INU). Conventional methods try to segment MRI images using only spatial information about the distribution of pixel intensities and are highly sensitive to noise and the IIH or INU. This paper presents a method to segment MRI brain images by considering the INU and spatial information using fuzzy C-means (FCM) clustering algorithm. Firstly, the INU of MRI brain image is corrected using fusion of Gaussian surfaces. The individual Gaussian surface is estimated independently over the different homogeneous regions by considering its center as the center of mass of the respective homogeneous region. Secondly, the IIH corrected image is segmented using probabilistic FCM algorithm, which considers spatial features of image pixels. The experiments using 3D synthetic phantoms and real-patient MRI brain images reveal that the proposed method performs satisfactorily.
利用概率模糊c均值聚类算法结合强度非均匀性和空间信息对MRI脑图像进行分割
脑磁共振成像图像的分割是分析人脑组织结构的一项重要任务。由于不适当的图像采集系统,MRI图像通常被强度不均匀性(IIH)或强度不均匀性(INU)破坏。传统方法试图仅使用有关像素强度分布的空间信息来分割MRI图像,并且对噪声和IIH或INU高度敏感。本文提出了一种利用模糊c均值聚类算法对脑MRI图像进行分割的方法,该方法考虑了INU和空间信息。首先,利用高斯曲面融合对MRI脑图像的INU进行校正;通过将单个高斯曲面的中心视为各自均匀区域的质心,对不同均匀区域上的单个高斯曲面进行独立估计。其次,利用考虑图像像素空间特征的概率FCM算法对IIH校正后的图像进行分割;利用三维合成模型和真实患者MRI脑图像进行的实验表明,该方法具有令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信