Enhanced Performance of Piezoelectric Bending Actuator by Material Redistribution

Nilanjan Chattaraj, R. Ganguli
{"title":"Enhanced Performance of Piezoelectric Bending Actuator by Material Redistribution","authors":"Nilanjan Chattaraj, R. Ganguli","doi":"10.1109/ISDCS49393.2020.9262974","DOIUrl":null,"url":null,"abstract":"This paper presents a design of a piezoelectric bending actuator to achieve enhanced performance by redistributing its piezoelectric material. The performance of the present design has been evaluated by using commercial finite element package. The result reveals that the tip deflection, block force, output energy, output energy density and energy efficiency can be improved by around 20%, 110%, 147%, 147% and 147%, respectively, compared to its existing topologically equivalent counterparts of equal amount of mass and capacitance. However, the frequency of the first mode of vibration that often defines the mechanical bandwidth of the actuator, will be reduced by around 41% compared to its existing topologically equivalent counterparts. Nevertheless, there are many applications, where a piezoelectric cantilever actuator is either vibrated at low resonant frequency, or operated under low bandwidth with enhanced performance. Therefore, the proposed design of piezoelectric bending actuator exhibits prospective usefulness for many applications. Since this research is a comparative study of different structural designs of piezoelectric actuators, therefore, a comparative analysis using finite element models will be sufficient to rationalize the benefits of the proposed design.","PeriodicalId":177307,"journal":{"name":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDCS49393.2020.9262974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a design of a piezoelectric bending actuator to achieve enhanced performance by redistributing its piezoelectric material. The performance of the present design has been evaluated by using commercial finite element package. The result reveals that the tip deflection, block force, output energy, output energy density and energy efficiency can be improved by around 20%, 110%, 147%, 147% and 147%, respectively, compared to its existing topologically equivalent counterparts of equal amount of mass and capacitance. However, the frequency of the first mode of vibration that often defines the mechanical bandwidth of the actuator, will be reduced by around 41% compared to its existing topologically equivalent counterparts. Nevertheless, there are many applications, where a piezoelectric cantilever actuator is either vibrated at low resonant frequency, or operated under low bandwidth with enhanced performance. Therefore, the proposed design of piezoelectric bending actuator exhibits prospective usefulness for many applications. Since this research is a comparative study of different structural designs of piezoelectric actuators, therefore, a comparative analysis using finite element models will be sufficient to rationalize the benefits of the proposed design.
材料再分配提高压电弯曲驱动器性能
本文提出了一种压电弯曲驱动器的设计方案,通过压电材料的再分布来提高驱动器的性能。本设计的性能已通过商用有限元软件包进行了评估。结果表明,与同等质量和容量的现有拓扑等效材料相比,该材料的尖端挠度、阻挡力、输出能量、输出能量密度和能量效率分别提高了约20%、110%、147%、147%和147%。然而,第一振型的频率通常定义了执行器的机械带宽,与现有拓扑等效的同类产品相比,该频率将降低约41%。然而,在许多应用中,压电悬臂动器要么在低谐振频率下振动,要么在低带宽下工作,从而提高性能。因此,所提出的压电弯曲致动器设计在许多应用中显示出潜在的用途。由于本研究是对压电致动器不同结构设计的比较研究,因此,使用有限元模型进行比较分析将足以使所提出设计的优势合理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信