Development trend of insider anomaly detection system

Minkyu Kim, Kihwan Kim, Hoonjae Lee
{"title":"Development trend of insider anomaly detection system","authors":"Minkyu Kim, Kihwan Kim, Hoonjae Lee","doi":"10.23919/ICACT.2018.8323761","DOIUrl":null,"url":null,"abstract":"Recently, industrial and national infrastructure suffered economic losses due to internal leaks caused by insider leaks and key data leaks. As a result, many companies applying not only physical external and internal penetration methods, but also software, machine learning, and other methods to detect people's abnormal behaviour. This paper surveys trends and forecasts of the intrusion detection techniques by categorizing into basic software and machine learning technique.","PeriodicalId":228625,"journal":{"name":"2018 20th International Conference on Advanced Communication Technology (ICACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2018.8323761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, industrial and national infrastructure suffered economic losses due to internal leaks caused by insider leaks and key data leaks. As a result, many companies applying not only physical external and internal penetration methods, but also software, machine learning, and other methods to detect people's abnormal behaviour. This paper surveys trends and forecasts of the intrusion detection techniques by categorizing into basic software and machine learning technique.
内部异常检测系统的发展趋势
近期,行业和国家基础设施因内部泄露和关键数据泄露而遭受经济损失。因此,许多公司不仅采用物理的外部和内部渗透方法,还采用软件、机器学习等方法来检测人们的异常行为。本文将入侵检测技术分为基础软件技术和机器学习技术,概述了入侵检测技术的发展趋势和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信