Continuous learning: a design methodology for fault-tolerant neural networks

V. Piuri
{"title":"Continuous learning: a design methodology for fault-tolerant neural networks","authors":"V. Piuri","doi":"10.1145/98894.99116","DOIUrl":null,"url":null,"abstract":"Fault tolerance in artificial neural networks is an important feature, in particular when the application is critical or when maintenance is difficult. This paper presents a general design methodology for designing fault-tolerant architectures, starting from the behavioral description of the nominal network and from the nominal algorithm. The behavioral level is considered to detect errors due to hardware faults, while system survival is guaranteed by the reactivation of learning mechanisms of the nominal network. An example of the use of this methodology is presented and evaluated.","PeriodicalId":175812,"journal":{"name":"Proceedings of the 3rd international conference on Industrial and engineering applications of artificial intelligence and expert systems - Volume 2","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd international conference on Industrial and engineering applications of artificial intelligence and expert systems - Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/98894.99116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fault tolerance in artificial neural networks is an important feature, in particular when the application is critical or when maintenance is difficult. This paper presents a general design methodology for designing fault-tolerant architectures, starting from the behavioral description of the nominal network and from the nominal algorithm. The behavioral level is considered to detect errors due to hardware faults, while system survival is guaranteed by the reactivation of learning mechanisms of the nominal network. An example of the use of this methodology is presented and evaluated.
持续学习:一种容错神经网络的设计方法
在人工神经网络中,容错是一个重要的特性,特别是在应用关键或维护困难的情况下。本文从标称网络的行为描述和标称算法出发,提出了一种设计容错体系结构的通用设计方法。行为层被认为是检测由于硬件故障引起的错误,而系统的生存是通过重新激活名义网络的学习机制来保证的。提出并评价了该方法的一个应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信