A new method for mining globally exceptional patterns in multi-database

Huiwen Fu, Dingrong Yuan, Xiaomeng Huang, Xiaohu Yang
{"title":"A new method for mining globally exceptional patterns in multi-database","authors":"Huiwen Fu, Dingrong Yuan, Xiaomeng Huang, Xiaohu Yang","doi":"10.1109/ICSSEM.2012.6340825","DOIUrl":null,"url":null,"abstract":"Many large organizations need to mine multi-databases distributed in their branches for exceptional pattern for the purpose of globally decision-making. The present major strategies of mining exceptional interesting pattern is to merge all multi-databases into a single dataset for discovery, but this destructs the local distribution character of the pattern in different branches. The only work mining multi-database not as a single database is not complete and the method to find exceptional patterns is inaccuracy. In this paper, we give a new method to mining exceptional interesting pattern in multi-database. The experimental results show that our theory is practical and efficient.","PeriodicalId":115037,"journal":{"name":"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2012.6340825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many large organizations need to mine multi-databases distributed in their branches for exceptional pattern for the purpose of globally decision-making. The present major strategies of mining exceptional interesting pattern is to merge all multi-databases into a single dataset for discovery, but this destructs the local distribution character of the pattern in different branches. The only work mining multi-database not as a single database is not complete and the method to find exceptional patterns is inaccuracy. In this paper, we give a new method to mining exceptional interesting pattern in multi-database. The experimental results show that our theory is practical and efficient.
一种多数据库全局异常模式挖掘新方法
许多大型组织需要对分布在其分支机构中的多数据库进行挖掘,以获得特殊模式,从而进行全局决策。目前挖掘异常有趣模式的主要策略是将多个数据库合并为一个数据集进行发现,但这破坏了模式在不同分支上的局部分布特性。挖掘多数据库而不是单个数据库的工作是不完整的,发现异常模式的方法是不准确的。本文提出了一种挖掘多数据库中异常兴趣模式的新方法。实验结果表明,该理论是实用、有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信