Deep Visual Domain Adaptation

G. Csurka
{"title":"Deep Visual Domain Adaptation","authors":"G. Csurka","doi":"10.1109/SYNASC51798.2020.00013","DOIUrl":null,"url":null,"abstract":"Domain adaptation (DA) aims at improving the performance of a model on target domains by transferring the knowledge contained in different but related source domains. With recent advances in deep learning models which are extremely data hungry, the interest for visual DA has significantly increased in the last decade and the number of related work in the field exploded. The aim of this paper, therefore, is to give a comprehensive overview of deep domain adaptation methods for computer vision applications. First, we detail and compared different possible ways of exploiting deep architectures for domain adaptation. Then, we propose an overview of recent trends in deep visual DA. Finally, we mention a few improvement strategies, orthogonal to these methods, that can be applied to these models. While we mainly focus on image classification, we give pointers to papers that extend these ideas for other applications such as semantic segmentation, object detection, person re-identifications, and others.","PeriodicalId":278104,"journal":{"name":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC51798.2020.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

Abstract

Domain adaptation (DA) aims at improving the performance of a model on target domains by transferring the knowledge contained in different but related source domains. With recent advances in deep learning models which are extremely data hungry, the interest for visual DA has significantly increased in the last decade and the number of related work in the field exploded. The aim of this paper, therefore, is to give a comprehensive overview of deep domain adaptation methods for computer vision applications. First, we detail and compared different possible ways of exploiting deep architectures for domain adaptation. Then, we propose an overview of recent trends in deep visual DA. Finally, we mention a few improvement strategies, orthogonal to these methods, that can be applied to these models. While we mainly focus on image classification, we give pointers to papers that extend these ideas for other applications such as semantic segmentation, object detection, person re-identifications, and others.
深度视觉域适应
领域自适应(Domain adaptation, DA)旨在通过转移不同但相关的源领域中的知识来提高模型在目标领域上的性能。随着深度学习模型的最新进展,对视觉数据处理的兴趣在过去十年中显著增加,该领域的相关工作数量爆炸式增长。因此,本文的目的是对计算机视觉应用中的深度域自适应方法进行全面概述。首先,我们详细比较了利用深度架构进行领域适应的不同可能方法。然后,我们对深度视觉数据处理的最新趋势进行了概述。最后,我们提到了一些与这些方法正交的改进策略,可以应用于这些模型。虽然我们主要关注图像分类,但我们也提供了一些将这些思想扩展到其他应用的论文,如语义分割、目标检测、人物重新识别等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信