{"title":"A nearly lossless vector quantization algorithm for compression of remotely sensed images","authors":"K. Sayood","doi":"10.1109/ACSSC.1998.751526","DOIUrl":null,"url":null,"abstract":"Most compression algorithms are designed for minimizing a squared error criterion. The squared error criterion does not accurately represent the fidelity requirements for scientific image compression. In this paper we propose a distortion measure which correlates with subjective evaluations, and an adaptive vector quantization algorithm which minimizes this distortion measure. A new approach to codebook design is presented to replace the nearest neighbor approach.","PeriodicalId":393743,"journal":{"name":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1998.751526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most compression algorithms are designed for minimizing a squared error criterion. The squared error criterion does not accurately represent the fidelity requirements for scientific image compression. In this paper we propose a distortion measure which correlates with subjective evaluations, and an adaptive vector quantization algorithm which minimizes this distortion measure. A new approach to codebook design is presented to replace the nearest neighbor approach.