A genetic algorithm based clustering approach for improving off-line handwritten digit classification

S. Impedovo, Francesco Maurizio Mangini, G. Pirlo
{"title":"A genetic algorithm based clustering approach for improving off-line handwritten digit classification","authors":"S. Impedovo, Francesco Maurizio Mangini, G. Pirlo","doi":"10.1109/ISSPA.2012.6310471","DOIUrl":null,"url":null,"abstract":"In this paper a new clustering technique for improving off-line handwritten digit recognition is introduced. Clustering design is approached as an optimization problem in which the objective function to be minimized is the cost function associated to the classification, that is here performed by the k-nearest neighbor (k-NN) classifier based on the Sokal and Michener dissimilarity measure. For this purpose, a genetic algorithm is used to determine the best cluster centers to reduce classification time, without suffering a great loss in accuracy. In addition, an effective strategy for generating the initial-population of the genetic algorithm is also presented. The experimental tests carried out using the MNIST database show the effectiveness of this method.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper a new clustering technique for improving off-line handwritten digit recognition is introduced. Clustering design is approached as an optimization problem in which the objective function to be minimized is the cost function associated to the classification, that is here performed by the k-nearest neighbor (k-NN) classifier based on the Sokal and Michener dissimilarity measure. For this purpose, a genetic algorithm is used to determine the best cluster centers to reduce classification time, without suffering a great loss in accuracy. In addition, an effective strategy for generating the initial-population of the genetic algorithm is also presented. The experimental tests carried out using the MNIST database show the effectiveness of this method.
基于遗传算法的聚类方法改进离线手写体数字分类
本文介绍了一种改进离线手写数字识别的聚类技术。聚类设计被视为一个优化问题,其中要最小化的目标函数是与分类相关的成本函数,这是由基于Sokal和Michener不相似性度量的k-近邻(k-NN)分类器执行的。为此,使用遗传算法来确定最佳聚类中心,以减少分类时间,而不会损失很大的准确性。此外,还提出了一种有效的遗传算法初始种群生成策略。利用MNIST数据库进行的实验测试表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信