{"title":"Quantum-dot cellular automata: computing by field polarization","authors":"G. Bernstein","doi":"10.1145/775832.775900","DOIUrl":null,"url":null,"abstract":"As CMOS technology continue its monotonic shrink, computing with quantum dots remains a goal in nanotechnology research. Quantum-dot cellular automata (QCA) is a paradigm for low-power, high-speed, highly dense computing that could be realized in a variety of materials systems. Discussed here are the basic paradigm of QCA, materials systems in which QCA might be constructed, a series of experiments performed in the metal tunnel junction technology, and ideas for future QCA implementations.","PeriodicalId":167477,"journal":{"name":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/775832.775900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
As CMOS technology continue its monotonic shrink, computing with quantum dots remains a goal in nanotechnology research. Quantum-dot cellular automata (QCA) is a paradigm for low-power, high-speed, highly dense computing that could be realized in a variety of materials systems. Discussed here are the basic paradigm of QCA, materials systems in which QCA might be constructed, a series of experiments performed in the metal tunnel junction technology, and ideas for future QCA implementations.