Julian Dobusch, Philipp Konarski, D. Kuebrich, T. Duerbaum
{"title":"EMC Focused Half-Bridge Characterization and Modeling","authors":"Julian Dobusch, Philipp Konarski, D. Kuebrich, T. Duerbaum","doi":"10.1109/EMCEurope.2019.8872043","DOIUrl":null,"url":null,"abstract":"Power electronic circuits are a major source of Electromagnetic Compatibility (EMC) problems. The increased switching speed of modern semiconductor devises based on Silicon Carbide (SiC) and Gallium Nitride (GaN) further aggravates this issue. Thus, the importance of including EMC aspects in the design phase of a power electronic circuit is high and a reliable simulation model is very useful for rapid circuit testing and identification of the source of interference. However, the influence of parasitic components represents a crucial part of the coupling paths and thus has to be considered. This paper covers the development of a highly accurate simulation model including these parasitics. A major concern is the measurement of coupling capacitances which form an essential contribution to the model.","PeriodicalId":225005,"journal":{"name":"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope.2019.8872043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Power electronic circuits are a major source of Electromagnetic Compatibility (EMC) problems. The increased switching speed of modern semiconductor devises based on Silicon Carbide (SiC) and Gallium Nitride (GaN) further aggravates this issue. Thus, the importance of including EMC aspects in the design phase of a power electronic circuit is high and a reliable simulation model is very useful for rapid circuit testing and identification of the source of interference. However, the influence of parasitic components represents a crucial part of the coupling paths and thus has to be considered. This paper covers the development of a highly accurate simulation model including these parasitics. A major concern is the measurement of coupling capacitances which form an essential contribution to the model.