{"title":"Understanding and minimizing ground bounce during mode transition of power gating structures","authors":"Suhwan Kim, S. Kosonocky, D. Knebel","doi":"10.1145/871506.871515","DOIUrl":null,"url":null,"abstract":"We introduce and analyze the ground bounce due to power mode transition in power gating structures. To reduce the ground bounce, we propose novel power gating structures in which sleep transistors are turned on in a non-uniform stepwise manner. Our power gating structures reduce the magnitude of peak current and voltage glitches in the power distribution network as well as the minimum time required to stabilize power and ground. Experimental simulation results with PowerSpice fixtured in a package model demonstrate the effectiveness of the proposed power gate switching noise reduction techniques.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"201","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/871506.871515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 201
Abstract
We introduce and analyze the ground bounce due to power mode transition in power gating structures. To reduce the ground bounce, we propose novel power gating structures in which sleep transistors are turned on in a non-uniform stepwise manner. Our power gating structures reduce the magnitude of peak current and voltage glitches in the power distribution network as well as the minimum time required to stabilize power and ground. Experimental simulation results with PowerSpice fixtured in a package model demonstrate the effectiveness of the proposed power gate switching noise reduction techniques.