Set partitioning of Gaussian integer constellations and its application to two-dimensional interleaver design

J. Freudenberger, Jens Spinner, S. Shavgulidze
{"title":"Set partitioning of Gaussian integer constellations and its application to two-dimensional interleaver design","authors":"J. Freudenberger, Jens Spinner, S. Shavgulidze","doi":"10.1109/SSD.2014.6808757","DOIUrl":null,"url":null,"abstract":"This work demonstrates that the concept of set partitioning can be applied to Gaussian integer constellations that are isomorphic to two-dimensional modules over rings of integers modulo p. We derive upper bounds on the achievable minimum distance in the subsets and present a construction for the set partitioning. This construction achieves optimal or close to optimal minimum distances. Furthermore, we demonstrate that this set partitioning can be applied to an interleaving technique for correcting two-dimensional cyclic clusters of errors.","PeriodicalId":168063,"journal":{"name":"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2014.6808757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work demonstrates that the concept of set partitioning can be applied to Gaussian integer constellations that are isomorphic to two-dimensional modules over rings of integers modulo p. We derive upper bounds on the achievable minimum distance in the subsets and present a construction for the set partitioning. This construction achieves optimal or close to optimal minimum distances. Furthermore, we demonstrate that this set partitioning can be applied to an interleaving technique for correcting two-dimensional cyclic clusters of errors.
高斯整数星座的集合划分及其在二维交织器设计中的应用
本文证明了集划分的概念可以应用于整数模p环上同构于二维模的高斯整数星座。我们推导了子集中可达到的最小距离的上界,并给出了集划分的构造。这种构造实现了最优或接近最优最小距离。此外,我们证明了这种集划分可以应用于交错技术,以纠正二维循环簇的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信