An LPI design for secure burst communication systems

Yuxiao Yang, Jianjiang Zhou, Fei Wang, C. Shi
{"title":"An LPI design for secure burst communication systems","authors":"Yuxiao Yang, Jianjiang Zhou, Fei Wang, C. Shi","doi":"10.1109/ChinaSIP.2014.6889320","DOIUrl":null,"url":null,"abstract":"An LPI burst communication model based on conditional maximum entropy is presented in this paper. In this model, the conditional entropy of transmitting moments is the largest, and the prior data are used as the sample space, while Lagrange multipliers are selected as optimization variables. Hybrid Chaotic Particle Swarm Optimization (HCPSO) that is used in the model takes the dual programming of the conditional maximum entropy as objective function, and the conditional maximum entropy model is ultimately determined through this optimization algorithm. Compared with the usual method of fixed threshold, the simulation results show that the conditional maximum entropy method not only has longer effective communication time, but also can effectively increase the uncertainty of transmitting moments. The more the uncertainty of transmitting moments, the better the low probability of intercept performance is. So the burst communication has better performance of low probability of intercept using conditional maximum entropy model.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An LPI burst communication model based on conditional maximum entropy is presented in this paper. In this model, the conditional entropy of transmitting moments is the largest, and the prior data are used as the sample space, while Lagrange multipliers are selected as optimization variables. Hybrid Chaotic Particle Swarm Optimization (HCPSO) that is used in the model takes the dual programming of the conditional maximum entropy as objective function, and the conditional maximum entropy model is ultimately determined through this optimization algorithm. Compared with the usual method of fixed threshold, the simulation results show that the conditional maximum entropy method not only has longer effective communication time, but also can effectively increase the uncertainty of transmitting moments. The more the uncertainty of transmitting moments, the better the low probability of intercept performance is. So the burst communication has better performance of low probability of intercept using conditional maximum entropy model.
安全突发通信系统的LPI设计
提出了一种基于条件最大熵的LPI突发通信模型。在该模型中,传递矩的条件熵最大,采用先验数据作为样本空间,选择拉格朗日乘子作为优化变量。模型中使用的混合混沌粒子群优化(HCPSO)以条件最大熵的对偶规划为目标函数,通过该优化算法最终确定条件最大熵模型。仿真结果表明,与常用的固定阈值方法相比,条件最大熵方法不仅具有更长的有效通信时间,而且可以有效地增加传输矩的不确定性。发射力矩的不确定性越大,低概率拦截性能越好。因此,采用条件最大熵模型进行突发通信具有较好的低截获概率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信