{"title":"Pattern formation in clouds via Turing instabilities","authors":"Juliane Rosemeier, P. Spichtinger","doi":"10.1515/mcwf-2020-0104","DOIUrl":null,"url":null,"abstract":"Abstract Pattern formation in clouds is a well-known feature, which can be observed almost every day. However, the guiding processes for structure formation are mostly unknown, and also theoretical investigations of cloud patterns are quite rare. From many scientific disciplines the occurrence of patterns in non-equilibrium systems due to Turing instabilities is known, i.e. unstable modes grow and form spatial structures. In this study we investigate a generic cloud model for the possibility of Turing instabilities. For this purpose, the model is extended by diffusion terms. We can show that for some cloud models, i.e special cases of the generic model, no Turing instabilities are possible. However, we also present a general class of cloud models, where Turing instabilities can occur. A key requisite is the occurrence of (weakly) nonlinear terms for accretion. Using numerical simulations for a special case of the general class of cloud models, we show spatial patterns of clouds in one and two spatial dimensions. From the numerical simulations we can see that the competition between collision terms and sedimentation is an important issue for the existence of pattern formation.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Climate and Weather Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcwf-2020-0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Pattern formation in clouds is a well-known feature, which can be observed almost every day. However, the guiding processes for structure formation are mostly unknown, and also theoretical investigations of cloud patterns are quite rare. From many scientific disciplines the occurrence of patterns in non-equilibrium systems due to Turing instabilities is known, i.e. unstable modes grow and form spatial structures. In this study we investigate a generic cloud model for the possibility of Turing instabilities. For this purpose, the model is extended by diffusion terms. We can show that for some cloud models, i.e special cases of the generic model, no Turing instabilities are possible. However, we also present a general class of cloud models, where Turing instabilities can occur. A key requisite is the occurrence of (weakly) nonlinear terms for accretion. Using numerical simulations for a special case of the general class of cloud models, we show spatial patterns of clouds in one and two spatial dimensions. From the numerical simulations we can see that the competition between collision terms and sedimentation is an important issue for the existence of pattern formation.