{"title":"Detection of roadside vegetation using features from the visible spectrum","authors":"Iva Harbas, M. Subašić","doi":"10.1109/MIPRO.2014.6859751","DOIUrl":null,"url":null,"abstract":"Detection of vegetation in images is a common procedure in remote sensing and is commonly applied to satellite and aerial images. Recently it has been applied to images recorded from within ground vehicles for autonomous navigation in outdoor environments. In this paper we present a method for roadside vegetation detection intended for traffic safety and infrastructure maintenance. While many published methods for vegetation detection are using Near Infrared images which are particularly suitable for vegetation detection, our method uses image features from the visible spectrum allowing the use of common onboard color cameras. Our feature set consists of color features and texture features. One of our specific goals was to identify a useful texture feature set for the problem of vegetation detection. Based on the feature set, the detection is implemented using a Support Vector Machine algorithm. For training and testing purposes we recorded our own image database consisting of different images containing roadside vegetation in various conditions. We are presenting promising experimental results and a discussion of specific problems experienced or expected in real-world application of the method.","PeriodicalId":299409,"journal":{"name":"2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPRO.2014.6859751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Detection of vegetation in images is a common procedure in remote sensing and is commonly applied to satellite and aerial images. Recently it has been applied to images recorded from within ground vehicles for autonomous navigation in outdoor environments. In this paper we present a method for roadside vegetation detection intended for traffic safety and infrastructure maintenance. While many published methods for vegetation detection are using Near Infrared images which are particularly suitable for vegetation detection, our method uses image features from the visible spectrum allowing the use of common onboard color cameras. Our feature set consists of color features and texture features. One of our specific goals was to identify a useful texture feature set for the problem of vegetation detection. Based on the feature set, the detection is implemented using a Support Vector Machine algorithm. For training and testing purposes we recorded our own image database consisting of different images containing roadside vegetation in various conditions. We are presenting promising experimental results and a discussion of specific problems experienced or expected in real-world application of the method.