Multi-Objective Optimized Computational Neural Network for Performance Enhancement in Non-Sinusoidal PMSM Drives

Eduardo Cattani Silva, L. R. Rocha, Paulo Henrique Alves Silva, Mozer Schunck Lorenzo, R. Vieira
{"title":"Multi-Objective Optimized Computational Neural Network for Performance Enhancement in Non-Sinusoidal PMSM Drives","authors":"Eduardo Cattani Silva, L. R. Rocha, Paulo Henrique Alves Silva, Mozer Schunck Lorenzo, R. Vieira","doi":"10.1109/ITEC55900.2023.10186992","DOIUrl":null,"url":null,"abstract":"This work proposes a control scheme for tuning a neural network (NN) with a multi-objective optimizer in order to reduce the torque ripple and losses of a non-sinusoidal PMSM driver over a wide speed operation range. To achieve these goals, the neural network structure and the cost functions are defined, then a virtual machine running in cloud service massively executed the optimization algorithm to obtain several sets of dominant gains and the most appropriate one has been picked. Using these gains and feeding the inputs, the NN is able to add disturbances in both currents and voltages in dq current control loops, allowing torque ripple mitigation. Simulation results are presented to demonstrate the reduction in torque ripple and the losses when compared with approaches using only SPWM or DPWM.","PeriodicalId":234784,"journal":{"name":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC55900.2023.10186992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a control scheme for tuning a neural network (NN) with a multi-objective optimizer in order to reduce the torque ripple and losses of a non-sinusoidal PMSM driver over a wide speed operation range. To achieve these goals, the neural network structure and the cost functions are defined, then a virtual machine running in cloud service massively executed the optimization algorithm to obtain several sets of dominant gains and the most appropriate one has been picked. Using these gains and feeding the inputs, the NN is able to add disturbances in both currents and voltages in dq current control loops, allowing torque ripple mitigation. Simulation results are presented to demonstrate the reduction in torque ripple and the losses when compared with approaches using only SPWM or DPWM.
多目标优化计算神经网络在非正弦永磁同步电机驱动中的应用
本文提出了一种利用多目标优化器对神经网络(NN)进行调谐的控制方案,以减少非正弦PMSM驱动器在宽速度范围内的转矩脉动和损耗。为了实现这些目标,定义了神经网络结构和成本函数,然后在云服务上运行的虚拟机大规模执行优化算法,获得了几组优势增益,并选出了最合适的一组。使用这些增益并馈送输入,神经网络能够在dq电流控制回路中添加电流和电压中的干扰,从而允许转矩纹波缓解。仿真结果表明,与仅使用SPWM或DPWM的方法相比,该方法减少了转矩脉动和损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信