Self-Supervised Lidar Place Recognition in Overhead Imagery Using Unpaired Data

T. Y. Tang, D. Martini
{"title":"Self-Supervised Lidar Place Recognition in Overhead Imagery Using Unpaired Data","authors":"T. Y. Tang, D. Martini","doi":"10.15607/RSS.2023.XIX.098","DOIUrl":null,"url":null,"abstract":"—As much as place recognition is crucial for navi- gation, mapping and collecting training ground truth, namely sensor data pairs across different locations, are costly and time- consuming. This paper tackles these by learning lidar place recognition on public overhead imagery and in a self-supervised fashion, with no need for paired lidar and overhead imagery data. We learn the cross-modal data comparison between lidar and overhead imagery with a multi-step framework. First, images are transformed into synthetic lidar data and a latent projection is learned. Next, we discover pseudo pairs of lidar and satellite data from unpaired and asynchronous sequences, and use them for training a final embedding space projection in a cross-modality place recognition framework. We train and test our approach on real data from various environments and show performances approaching a supervised method using paired data.","PeriodicalId":248720,"journal":{"name":"Robotics: Science and Systems XIX","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2023.XIX.098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—As much as place recognition is crucial for navi- gation, mapping and collecting training ground truth, namely sensor data pairs across different locations, are costly and time- consuming. This paper tackles these by learning lidar place recognition on public overhead imagery and in a self-supervised fashion, with no need for paired lidar and overhead imagery data. We learn the cross-modal data comparison between lidar and overhead imagery with a multi-step framework. First, images are transformed into synthetic lidar data and a latent projection is learned. Next, we discover pseudo pairs of lidar and satellite data from unpaired and asynchronous sequences, and use them for training a final embedding space projection in a cross-modality place recognition framework. We train and test our approach on real data from various environments and show performances approaching a supervised method using paired data.
基于非配对数据的自监督激光雷达位置识别
-尽管位置识别对导航至关重要,但绘制和收集训练场真相(即不同位置的传感器数据对)既昂贵又耗时。本文通过在公共架空图像上学习激光雷达位置识别并以自我监督的方式解决这些问题,而不需要配对的激光雷达和架空图像数据。我们用多步框架学习了激光雷达与架空图像的跨模态数据比较。首先,将图像转换为合成激光雷达数据,并学习潜在投影。接下来,我们从未配对和异步序列中发现激光雷达和卫星数据的伪对,并使用它们在交叉模态位置识别框架中训练最终的嵌入空间投影。我们在来自不同环境的真实数据上训练和测试了我们的方法,并展示了使用成对数据接近监督方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信