Nanoscale CMOS circuit leakage power reduction by double-gate device

Keunwoo Kim, K. Das, R. Joshi, C. Chuang
{"title":"Nanoscale CMOS circuit leakage power reduction by double-gate device","authors":"Keunwoo Kim, K. Das, R. Joshi, C. Chuang","doi":"10.1145/1013235.1013267","DOIUrl":null,"url":null,"abstract":"Leakage power for extremely scaled (L/sub eff/ = 25 nm) double-gate devices is examined. Numerical two-dimensional simulation results for double-gate CMOS device/circuit power are presented from physics principle, identifying that double-gate technology is an ideal candidate for low-power applications. Unique double-gate device features resulting from gate-gate coupling are discussed and effectively exploited for optimal low-leakage device design. Design tradeoffs for double-gate CMOS power and performance are suggested for low-power and high-performance applications. Total power consumptions of static and dynamic circuits and latches for double-gate device are analyzed considering state dependency, showing that leakage current is reduced by a factor of over 10X, compared with conventional bulk-Si counterpart.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Leakage power for extremely scaled (L/sub eff/ = 25 nm) double-gate devices is examined. Numerical two-dimensional simulation results for double-gate CMOS device/circuit power are presented from physics principle, identifying that double-gate technology is an ideal candidate for low-power applications. Unique double-gate device features resulting from gate-gate coupling are discussed and effectively exploited for optimal low-leakage device design. Design tradeoffs for double-gate CMOS power and performance are suggested for low-power and high-performance applications. Total power consumptions of static and dynamic circuits and latches for double-gate device are analyzed considering state dependency, showing that leakage current is reduced by a factor of over 10X, compared with conventional bulk-Si counterpart.
采用双栅器件降低纳米级CMOS电路漏功率
研究了极尺度(L/sub / = 25nm)双栅器件的泄漏功率。从物理原理出发,给出了双栅CMOS器件/电路电源的二维数值仿真结果,表明双栅技术是低功耗应用的理想选择。讨论了由栅-栅耦合引起的独特的双栅器件特性,并有效地利用其进行了低漏器件的优化设计。针对低功耗和高性能应用,提出了双栅CMOS功耗和性能的设计折衷方案。考虑状态依赖性,分析了双栅器件的静态和动态电路及锁存器的总功耗,结果表明,与传统的体硅器件相比,泄漏电流减少了10倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信