Kernel-Based Fuzzy Local Binary Pattern for Gait Recognition

A. G. Binsaadoon, El-Sayed M. El-Alfy
{"title":"Kernel-Based Fuzzy Local Binary Pattern for Gait Recognition","authors":"A. G. Binsaadoon, El-Sayed M. El-Alfy","doi":"10.1109/EMS.2016.016","DOIUrl":null,"url":null,"abstract":"Gait recognition has received increasing attention in biometrics. However, more effort is needed to enhance the performance. In this paper, we investigate a novel descriptor for gait recognition known as Kernel-based Fuzzy Local Binary Pattern (KFLBP). The spatio-temporal static and dynamic characteristics of a gait sequence is first summarized using a Gait-Energy Image (GEI). Then, the proposed approach combines multiple FLBP with different radii to better handle uncertainty in GEI and improve the recognition performance. We evaluate the proposed method on CASIA B dataset at different view angles. We also compare the performance with other feature extraction methods and explore the impact of different walking covariates on the performance.","PeriodicalId":446936,"journal":{"name":"2016 European Modelling Symposium (EMS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 European Modelling Symposium (EMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2016.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gait recognition has received increasing attention in biometrics. However, more effort is needed to enhance the performance. In this paper, we investigate a novel descriptor for gait recognition known as Kernel-based Fuzzy Local Binary Pattern (KFLBP). The spatio-temporal static and dynamic characteristics of a gait sequence is first summarized using a Gait-Energy Image (GEI). Then, the proposed approach combines multiple FLBP with different radii to better handle uncertainty in GEI and improve the recognition performance. We evaluate the proposed method on CASIA B dataset at different view angles. We also compare the performance with other feature extraction methods and explore the impact of different walking covariates on the performance.
基于核的模糊局部二值模式步态识别
步态识别在生物识别领域受到越来越多的关注。然而,需要更多的努力来提高性能。在本文中,我们研究了一种新的描述符步态识别称为基于核的模糊局部二值模式(KFLBP)。首先利用步态能量图像(GEI)对步态序列的时空静态和动态特征进行了总结。然后,将不同半径的多个FLBP组合在一起,可以更好地处理GEI中的不确定性,提高识别性能。我们在CASIA B数据集上以不同视角对该方法进行了评估。我们还比较了与其他特征提取方法的性能,并探讨了不同行走协变量对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信