Yuan Bing, Lai Xin-quan, Ye Qiang, Wang Hongyi, L. Yajun
{"title":"Ramp-based soft-start circuit with soft-recovery for DC-DC buck converters","authors":"Yuan Bing, Lai Xin-quan, Ye Qiang, Wang Hongyi, L. Yajun","doi":"10.1109/EDSSC.2013.6628196","DOIUrl":null,"url":null,"abstract":"A soft-start circuit with soft-recovery function for DC-DC converters is presented in this paper. The soft-start strategy is based on a linearly ramped-up reference and an error amplifier with minimum selector implemented with a three-limb differential pair skillfully. The soft-recovery strategy is based on a compact clamp circuit. The ramp voltage would be clamped once the feedback voltage is detected lower than a threshold, which could control the output to be recovered slowly and linearly. A monolithic DC-DC buck converter with proposed circuit has been fabricated with a 0.5μm CMOS process for validation. The measurement result shows that the ramp-based soft-start and soft-recovery circuit have good performance and agree well with the theoretical analysis.","PeriodicalId":333267,"journal":{"name":"2013 IEEE International Conference of Electron Devices and Solid-state Circuits","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of Electron Devices and Solid-state Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2013.6628196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A soft-start circuit with soft-recovery function for DC-DC converters is presented in this paper. The soft-start strategy is based on a linearly ramped-up reference and an error amplifier with minimum selector implemented with a three-limb differential pair skillfully. The soft-recovery strategy is based on a compact clamp circuit. The ramp voltage would be clamped once the feedback voltage is detected lower than a threshold, which could control the output to be recovered slowly and linearly. A monolithic DC-DC buck converter with proposed circuit has been fabricated with a 0.5μm CMOS process for validation. The measurement result shows that the ramp-based soft-start and soft-recovery circuit have good performance and agree well with the theoretical analysis.