G. Berruti, M. Consales, A. Borriello, M. Giordano, S. Buontempo, G. Breglio, A. Makovec, P. Petagna, A. Cusano
{"title":"Radiation tolerant humidity sensors based on nano-scale TiO2-coated LPGs for high-energy physics applications","authors":"G. Berruti, M. Consales, A. Borriello, M. Giordano, S. Buontempo, G. Breglio, A. Makovec, P. Petagna, A. Cusano","doi":"10.1109/MEPHOCO.2014.6866458","DOIUrl":null,"url":null,"abstract":"This contribution deals with a feasibility analysis for the development of radiation tolerant fiber optic humidity sensors based on long period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). Here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO2) thin layer (~100 nm thick) for relative humidity (RH) monitoring in the humidity range [0-75]%RH and in the temperature range [-10°C, 25]°C. Experimental results demonstrate the very high RH sensitivities of the proposed device (up to 1.4 nm/%RH at low humidity). The TiO2-coated LPG sensor radiation tolerance is also investigated up to 1Mrad γ-ionizing radiation dose. Collected results demonstrate the strong potentialities of the proposed technology in light of its future exploitation in HEP applications.","PeriodicalId":219746,"journal":{"name":"2014 Third Mediterranean Photonics Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Third Mediterranean Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEPHOCO.2014.6866458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This contribution deals with a feasibility analysis for the development of radiation tolerant fiber optic humidity sensors based on long period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). Here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO2) thin layer (~100 nm thick) for relative humidity (RH) monitoring in the humidity range [0-75]%RH and in the temperature range [-10°C, 25]°C. Experimental results demonstrate the very high RH sensitivities of the proposed device (up to 1.4 nm/%RH at low humidity). The TiO2-coated LPG sensor radiation tolerance is also investigated up to 1Mrad γ-ionizing radiation dose. Collected results demonstrate the strong potentialities of the proposed technology in light of its future exploitation in HEP applications.