Sang-Hoon Kim, Hoon Shin, Youngkyun Jeong, Junehee Lee, Jaehyuk Choi, J. Chun
{"title":"A 12-Gb/s dual-channel transceiver for CMOS image sensor systems","authors":"Sang-Hoon Kim, Hoon Shin, Youngkyun Jeong, Junehee Lee, Jaehyuk Choi, J. Chun","doi":"10.1109/ESSCIRC.2016.7598300","DOIUrl":null,"url":null,"abstract":"We propose a dual-channel interface architecture that allocates high and low transition-density bit streams to two separate channels. The transmitter utilizes the stacked drivers with charge-recycling to reduce the power consumption. The DC-coupled receiver front-end circuits deal with the common-mode level variations and compensate for the channel loss. The tracked oversampling CDR which realizes fast lock acquisition below 1 baud period and low logic latency is shared by the two channels. Fabricated in a 65-nm low-power CMOS technology, the dual-channel transceiver achieves 12-Gb/s data rate while the transmitter consumes 20.43mW from a 1.2V power supply.","PeriodicalId":246471,"journal":{"name":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2016.7598300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We propose a dual-channel interface architecture that allocates high and low transition-density bit streams to two separate channels. The transmitter utilizes the stacked drivers with charge-recycling to reduce the power consumption. The DC-coupled receiver front-end circuits deal with the common-mode level variations and compensate for the channel loss. The tracked oversampling CDR which realizes fast lock acquisition below 1 baud period and low logic latency is shared by the two channels. Fabricated in a 65-nm low-power CMOS technology, the dual-channel transceiver achieves 12-Gb/s data rate while the transmitter consumes 20.43mW from a 1.2V power supply.