P3S: A High Accuracy Probabilistic Prediction Processing System for CNN Acceleration

Hang Xiao, Haobo Xu, Xiaoming Chen, Yujie Wang, Yinhe Han
{"title":"P3S: A High Accuracy Probabilistic Prediction Processing System for CNN Acceleration","authors":"Hang Xiao, Haobo Xu, Xiaoming Chen, Yujie Wang, Yinhe Han","doi":"10.1145/3526241.3530322","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) achieve state-of-the-art performance for perception tasks at the cost of billions of computational operations. In this paper, we propose a probabilistic prediction processing system, dubbed P3S, to eliminate redundant compute-heavy convolution operations by predicting whether output activations are zero-valued. By exploiting the probability characteristic of Gaussian-like distributed activations and weights in CNNs, P3S calculates the partial convolution across values greater than a standard deviation-related threshold, to predict the ineffectual output activations. P3S skips remaining convolutions and sets outputs to zero in advance if output activations are predicted to be zero. P3S reduces 67% computations within 0.2% accuracy loss and does not even require retraining or fine-tuning CNNs. We further implement a P3S-based CNN accelerator that achieves 2.02x speedup and 2.23x energy efficiency on average over the traditional accelerator. Compared with the state-of-the-art prediction-based accelerator with 3% accuracy degradation, our P$^3$S yields up to 1.49x speedup and 1.69x energy efficiency.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Networks (CNNs) achieve state-of-the-art performance for perception tasks at the cost of billions of computational operations. In this paper, we propose a probabilistic prediction processing system, dubbed P3S, to eliminate redundant compute-heavy convolution operations by predicting whether output activations are zero-valued. By exploiting the probability characteristic of Gaussian-like distributed activations and weights in CNNs, P3S calculates the partial convolution across values greater than a standard deviation-related threshold, to predict the ineffectual output activations. P3S skips remaining convolutions and sets outputs to zero in advance if output activations are predicted to be zero. P3S reduces 67% computations within 0.2% accuracy loss and does not even require retraining or fine-tuning CNNs. We further implement a P3S-based CNN accelerator that achieves 2.02x speedup and 2.23x energy efficiency on average over the traditional accelerator. Compared with the state-of-the-art prediction-based accelerator with 3% accuracy degradation, our P$^3$S yields up to 1.49x speedup and 1.69x energy efficiency.
P3S:用于CNN加速的高精度概率预测处理系统
卷积神经网络(cnn)以数十亿次的计算操作为代价,实现了最先进的感知任务性能。在本文中,我们提出了一个概率预测处理系统,称为P3S,通过预测输出激活是否为零值来消除冗余的计算繁重的卷积操作。通过利用cnn中类高斯分布激活和权值的概率特征,P3S计算大于标准差相关阈值的部分卷积,以预测无效输出激活。如果预测输出激活为零,P3S将跳过剩余的卷积并提前将输出设置为零。P3S在0.2%的精度损失内减少67%的计算,甚至不需要重新训练或微调cnn。我们进一步实现了一个基于p3s的CNN加速器,与传统加速器相比,它的平均加速提高了2.02倍,能效提高了2.23倍。与精度下降3%的最先进的基于预测的加速器相比,我们的P$^3$S产生高达1.49倍的加速和1.69倍的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信