Annual Premium Determination for Joint Life Insurance with De Moivre and Gompertz’s Mortality Laws

Seftina Diyah Miasary
{"title":"Annual Premium Determination for Joint Life Insurance with De Moivre and Gompertz’s Mortality Laws","authors":"Seftina Diyah Miasary","doi":"10.21580/square.2022.4.2.13212","DOIUrl":null,"url":null,"abstract":"This research discusses how to determine the annual premium for joint life status. The death rate (mortality rate) is one of the factors that can be considered when calculating the premium. The quantitative method used in this study was to estimate the parameters of the De Moivre and Gompertz’s Mortality laws using secondary data from the 2011 Indonesian Mortality Table (TMI III) for men and women. This calculation generates a formula for calculating the annual premium for joint life insurance based on De Moivre and Gompertz mortality law. Starting with estimating the parameters of Gompertz's mortality law for the Indonesian Mortality Table in 2011 using the maximum likelihood estimation method, then calculating the combined life probability, death benefit APV, continuous life annuity APV, and annual premium for joint life insurance. The value of the annual premium on joint life insurance with the mortality law of De Moivre and Gompertz for a simulated term life insurance n = 10 years with age x (husband) 28 years and y (wife) 25 years, the death benefit (R) is Rp. 50,000,000; and the interest rate is 3.50 percent with the Indonesian Mortality Table in 2011. According to the calculations, the annual premium value of joint life insurance based on Gompertz's mortality law is greater than De Moivre's mortality law.Keywords: Join Life Insurance, Mortality Laws, Annual Premium.","PeriodicalId":406681,"journal":{"name":"Square : Journal of Mathematics and Mathematics Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Square : Journal of Mathematics and Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21580/square.2022.4.2.13212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research discusses how to determine the annual premium for joint life status. The death rate (mortality rate) is one of the factors that can be considered when calculating the premium. The quantitative method used in this study was to estimate the parameters of the De Moivre and Gompertz’s Mortality laws using secondary data from the 2011 Indonesian Mortality Table (TMI III) for men and women. This calculation generates a formula for calculating the annual premium for joint life insurance based on De Moivre and Gompertz mortality law. Starting with estimating the parameters of Gompertz's mortality law for the Indonesian Mortality Table in 2011 using the maximum likelihood estimation method, then calculating the combined life probability, death benefit APV, continuous life annuity APV, and annual premium for joint life insurance. The value of the annual premium on joint life insurance with the mortality law of De Moivre and Gompertz for a simulated term life insurance n = 10 years with age x (husband) 28 years and y (wife) 25 years, the death benefit (R) is Rp. 50,000,000; and the interest rate is 3.50 percent with the Indonesian Mortality Table in 2011. According to the calculations, the annual premium value of joint life insurance based on Gompertz's mortality law is greater than De Moivre's mortality law.Keywords: Join Life Insurance, Mortality Laws, Annual Premium.
用De Moivre和Gompertz的死亡率定律确定共同人寿保险的年保费
本研究探讨如何确定共同生命状态的年保费。死亡率(死亡率)是计算保费时可以考虑的因素之一。本研究中使用的定量方法是使用2011年印度尼西亚死亡率表(TMI III)中男性和女性的二次数据来估计De Moivre和Gompertz死亡率定律的参数。这一计算根据De Moivre和Gompertz死亡率定律,产生了计算共同人寿保险年保费的公式。首先利用最大似然估计法对2011年印度尼西亚死亡率表的Gompertz死亡率定律参数进行估计,然后计算联合人寿保险的综合寿命概率、死亡给付APV、连续人寿年金APV和年保费。以年龄x(丈夫)28岁,y(妻子)25岁为例,采用De Moivre和Gompertz死亡规律的联合人寿保险为模拟定期人寿保险,n = 10年,死亡保险金(R)为5000万卢比;根据2011年印尼死亡率表,利率为3.50%。根据计算,基于Gompertz死亡率定律的共同人寿保险的年保费值大于De Moivre死亡率定律。关键词:联合人寿保险,死亡率法,年保费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信