A Scheduling Framework for Decomposable Kernels on Energy Harvesting IoT Edge Nodes

Sethu Jose, J. Sampson, N. Vijaykrishnan, M. Kandemir
{"title":"A Scheduling Framework for Decomposable Kernels on Energy Harvesting IoT Edge Nodes","authors":"Sethu Jose, J. Sampson, N. Vijaykrishnan, M. Kandemir","doi":"10.1145/3526241.3530350","DOIUrl":null,"url":null,"abstract":"With the growing popularity of the Internet of Things (IoTs), emerging applications demand that edge nodes provide higher computational capabilities and long operation times while requiring minimal maintenance. Ambient energy harvesting is a promising alternative to batteries, but only if the hardware and software are optimized for the intermittent nature of the power source. At the same time, many compute tasks in IoT workloads involve executing decomposable kernels that may have application-dependent accuracy requirements. In this work, we introduce a hardware-software co-optimization framework for such kernels that aim to achieve maximum forward progress while running on energy harvesting Non-Volatile Processors (NVP). Using this framework, we develop an FFT and a convolution accelerator that computes up to 3.2x faster, while consuming 5.4x less energy, compared to a baseline energy-harvesting system. With our accuracy-aware scheduling strategy, the approximate computing enabled by this framework delivers on average 6.2x energy reduction and 3.2x speedup by sacrificing minimal accuracy of up to 6.9%.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing popularity of the Internet of Things (IoTs), emerging applications demand that edge nodes provide higher computational capabilities and long operation times while requiring minimal maintenance. Ambient energy harvesting is a promising alternative to batteries, but only if the hardware and software are optimized for the intermittent nature of the power source. At the same time, many compute tasks in IoT workloads involve executing decomposable kernels that may have application-dependent accuracy requirements. In this work, we introduce a hardware-software co-optimization framework for such kernels that aim to achieve maximum forward progress while running on energy harvesting Non-Volatile Processors (NVP). Using this framework, we develop an FFT and a convolution accelerator that computes up to 3.2x faster, while consuming 5.4x less energy, compared to a baseline energy-harvesting system. With our accuracy-aware scheduling strategy, the approximate computing enabled by this framework delivers on average 6.2x energy reduction and 3.2x speedup by sacrificing minimal accuracy of up to 6.9%.
能量收集物联网边缘节点上可分解核的调度框架
随着物联网(iot)的日益普及,新兴应用要求边缘节点提供更高的计算能力和更长的操作时间,同时需要最少的维护。环境能量收集是一种很有前途的电池替代品,但前提是硬件和软件针对电源的间歇性进行了优化。与此同时,物联网工作负载中的许多计算任务涉及执行可分解内核,这些内核可能具有与应用程序相关的精度要求。在这项工作中,我们为这些内核引入了一个软硬件协同优化框架,旨在在能量收集非易失性处理器(NVP)上运行时实现最大的向前进展。使用这个框架,我们开发了一个FFT和一个卷积加速器,与基线能量收集系统相比,计算速度提高了3.2倍,同时消耗的能量减少了5.4倍。通过我们的精度感知调度策略,该框架支持的近似计算通过牺牲高达6.9%的最小精度,平均减少6.2倍的能量和3.2倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信