Influence of packaging atmospheres on the durability of high-temperature SAW sensors

J. Bardong, G. Bruckner, M. Kraft, R. Fachberger
{"title":"Influence of packaging atmospheres on the durability of high-temperature SAW sensors","authors":"J. Bardong, G. Bruckner, M. Kraft, R. Fachberger","doi":"10.1109/ULTSYM.2009.5441557","DOIUrl":null,"url":null,"abstract":"Surface acoustic wave (SAW) devices are a technology of choice for passive, radio-interrogable sensor applications operating under extreme conditions. Suitably designed SAW devices can withstand e.g. temperatures exceeding 400°C. At high temperatures (HT), thermal energies reach values corresponding to the activation energies of reactions between gas components and the crystal's substrate elements and/or the metallisation elements, respectively. Thus, the atmosphere in the hermetic packaging becomes a crucial factor for the SAW device's stability. This work investigates the influence of various potential packaging atmospheres on SAW devices at temperatures up to 650°C. The SAW test structures consist of two delay lines with different lengths, which have been processed with Pt - based thin films. Substrate materials were either langasite (LGS), lithium niobate (LN) or stochiometric lithium niobate (sLN). The devices were annealed in a tube oven equipped with a HT-stable radio frequency (RF) measurement system in different atmospheres at several temperature levels up to 650°C. Afterwards, the SAW surfaces were characterised microscopically.","PeriodicalId":368182,"journal":{"name":"2009 IEEE International Ultrasonics Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2009.5441557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Surface acoustic wave (SAW) devices are a technology of choice for passive, radio-interrogable sensor applications operating under extreme conditions. Suitably designed SAW devices can withstand e.g. temperatures exceeding 400°C. At high temperatures (HT), thermal energies reach values corresponding to the activation energies of reactions between gas components and the crystal's substrate elements and/or the metallisation elements, respectively. Thus, the atmosphere in the hermetic packaging becomes a crucial factor for the SAW device's stability. This work investigates the influence of various potential packaging atmospheres on SAW devices at temperatures up to 650°C. The SAW test structures consist of two delay lines with different lengths, which have been processed with Pt - based thin films. Substrate materials were either langasite (LGS), lithium niobate (LN) or stochiometric lithium niobate (sLN). The devices were annealed in a tube oven equipped with a HT-stable radio frequency (RF) measurement system in different atmospheres at several temperature levels up to 650°C. Afterwards, the SAW surfaces were characterised microscopically.
封装环境对高温SAW传感器耐久性的影响
表面声波(SAW)器件是在极端条件下工作的无源、无线电可查询传感器应用的首选技术。适当设计的SAW器件可以承受例如超过400°C的温度。在高温(HT)下,热能分别达到气体组分与晶体的衬底元素和/或金属化元素之间反应的活化能。因此,密封封装中的气氛成为SAW器件稳定性的关键因素。这项工作研究了在高达650°C的温度下,各种潜在的封装气氛对SAW器件的影响。SAW测试结构由两条不同长度的延迟线组成,延迟线采用铂基薄膜处理。衬底材料为langasite (LGS)、lithium niobate (LN)或lithium niobate (sLN)。这些器件在装有高温稳定射频(RF)测量系统的管式烘箱中进行退火,在不同的大气中进行退火,温度最高可达650°C。然后,用显微镜对SAW表面进行表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信