SSIGAN: Semantic Segmentation via Improved Generative Adversarial Network

Mengxu Lu, Zhenxue Chen, Hao Qin, Yujiao Zhang, Jingjing Ji
{"title":"SSIGAN: Semantic Segmentation via Improved Generative Adversarial Network","authors":"Mengxu Lu, Zhenxue Chen, Hao Qin, Yujiao Zhang, Jingjing Ji","doi":"10.1109/ICSPS58776.2022.00140","DOIUrl":null,"url":null,"abstract":"Nowadays, although conditional convolutional neural networks have applied to semantic segmentation, their loss function needs to be carefully designed. We propose an improved generative adversarial network including a generator network and a discriminator network for semantic segmentation. In some blocks, we substitute 3×1 and 1×3 factorized convolution for 3×3 convolution to make full use of transverse and longitudinal information. We concat the original image with the output of the generator as the input of the discriminator network to improve the discriminant ability. As a result, our model achieves 69.6% mean intersection over union (mIoU) on the Cityscapes test set. Our experiments exhibit that adversarial training approach leads to improved accuracy on the Cityscapes, Camvid, Kitti and Gatech dataset in road scene.","PeriodicalId":330562,"journal":{"name":"2022 14th International Conference on Signal Processing Systems (ICSPS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Signal Processing Systems (ICSPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS58776.2022.00140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, although conditional convolutional neural networks have applied to semantic segmentation, their loss function needs to be carefully designed. We propose an improved generative adversarial network including a generator network and a discriminator network for semantic segmentation. In some blocks, we substitute 3×1 and 1×3 factorized convolution for 3×3 convolution to make full use of transverse and longitudinal information. We concat the original image with the output of the generator as the input of the discriminator network to improve the discriminant ability. As a result, our model achieves 69.6% mean intersection over union (mIoU) on the Cityscapes test set. Our experiments exhibit that adversarial training approach leads to improved accuracy on the Cityscapes, Camvid, Kitti and Gatech dataset in road scene.
基于改进生成对抗网络的语义分割
目前,条件卷积神经网络虽已应用于语义分割,但其损失函数需要精心设计。我们提出了一种改进的生成对抗网络,包括语义分割的生成器网络和判别器网络。在某些块中,我们用3×1和1×3分解卷积代替3×3卷积,以充分利用横向和纵向信息。我们将原始图像与生成器的输出连接起来作为鉴别器网络的输入,以提高鉴别能力。结果表明,我们的模型在cityscape测试集上实现了69.6%的平均交联(mIoU)。我们的实验表明,对抗性训练方法可以提高道路场景中cityscape、Camvid、Kitti和Gatech数据集的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信