An MCM/IC timing-driven placement algorithm featuring explicit design space exploration

H. Esbensen, E.S. Euh
{"title":"An MCM/IC timing-driven placement algorithm featuring explicit design space exploration","authors":"H. Esbensen, E.S. Euh","doi":"10.1109/MCMC.1996.510790","DOIUrl":null,"url":null,"abstract":"A genetic algorithm for building-block placement of MCMs and ICs is presented which simultaneously minimizes layout area and an Elmore-based estimate of the maximum path delay while trying to meet a target aspect ratio. Explicit design space exploration is performed by using a vector-valued, S-dimensional cost function and searching for a set of distinct solutions representing the best tradeoffs of the cost dimensions. Designers can then choose from the output set of feasible solutions. In contrast to existing approaches such as simulated annealing, neither weights nor bounds are needed, thereby eliminating the inherent practical problems of specifying these quantities. Promising results are obtained for various placement problems, including a real-world MCM design.","PeriodicalId":126969,"journal":{"name":"Proceedings 1996 IEEE Multi-Chip Module Conference (Cat. No.96CH35893)","volume":"15 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1996 IEEE Multi-Chip Module Conference (Cat. No.96CH35893)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCMC.1996.510790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A genetic algorithm for building-block placement of MCMs and ICs is presented which simultaneously minimizes layout area and an Elmore-based estimate of the maximum path delay while trying to meet a target aspect ratio. Explicit design space exploration is performed by using a vector-valued, S-dimensional cost function and searching for a set of distinct solutions representing the best tradeoffs of the cost dimensions. Designers can then choose from the output set of feasible solutions. In contrast to existing approaches such as simulated annealing, neither weights nor bounds are needed, thereby eliminating the inherent practical problems of specifying these quantities. Promising results are obtained for various placement problems, including a real-world MCM design.
具有显式设计空间探索的MCM/IC时序驱动布局算法
提出了一种用于mcm和ic构建块放置的遗传算法,该算法在试图满足目标宽高比的同时最小化布局面积和基于elmore的最大路径延迟估计。明确的设计空间探索是通过使用一个向量值,s维成本函数和搜索一组不同的解决方案来实现的,这些解决方案代表了成本维度的最佳权衡。然后,设计师可以从输出的可行解决方案中进行选择。与模拟退火等现有方法相比,既不需要权重也不需要边界,从而消除了指定这些量的固有实际问题。对于各种布局问题,包括实际的MCM设计,都获得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信