Multi-source Data Fusion Method in Monitoring Domain Based on Structural Similarity-Text Clustering and Ontology Glossary

Shujie Wu, Yinbin Yang, Xiaohui Pan
{"title":"Multi-source Data Fusion Method in Monitoring Domain Based on Structural Similarity-Text Clustering and Ontology Glossary","authors":"Shujie Wu, Yinbin Yang, Xiaohui Pan","doi":"10.1109/EI256261.2022.10117352","DOIUrl":null,"url":null,"abstract":"Data fusion is necessary for achieving muti-source data integration in power grid monitoring. In order to address the low accuracy of current data fusion approaches, this paper suggests a multi-source data fusion model based on structural similarity-text clustering and ontology glossary. The model uses the ontology glossary to store the clustering results and utilizes the DBSCAN algorithm based on structural similarity comparison to fuse the data. Finally, this paper compares the above model to the traditional k-means and DBSCAN model using data from the grid. The results demonstrate that the model in this paper has a higher data fusion accuracy, which suggests this model may successfully raise the level of data integration for power grid monitoring.","PeriodicalId":413409,"journal":{"name":"2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EI256261.2022.10117352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data fusion is necessary for achieving muti-source data integration in power grid monitoring. In order to address the low accuracy of current data fusion approaches, this paper suggests a multi-source data fusion model based on structural similarity-text clustering and ontology glossary. The model uses the ontology glossary to store the clustering results and utilizes the DBSCAN algorithm based on structural similarity comparison to fuse the data. Finally, this paper compares the above model to the traditional k-means and DBSCAN model using data from the grid. The results demonstrate that the model in this paper has a higher data fusion accuracy, which suggests this model may successfully raise the level of data integration for power grid monitoring.
基于结构相似度-文本聚类和本体术语表的监测领域多源数据融合方法
在电网监测中,数据融合是实现多源数据集成的必要条件。针对当前数据融合方法准确率低的问题,提出了一种基于结构相似度-文本聚类和本体术语表的多源数据融合模型。该模型使用本体术语表存储聚类结果,并利用基于结构相似性比较的DBSCAN算法进行数据融合。最后,本文将上述模型与传统的k-means和DBSCAN模型进行了比较。结果表明,该模型具有较高的数据融合精度,可以成功地提高电网监测的数据集成水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信