Saliency-based point cloud quality assessment method using aware features learning

Abdelouahed Laazoufi, M. Hassouni
{"title":"Saliency-based point cloud quality assessment method using aware features learning","authors":"Abdelouahed Laazoufi, M. Hassouni","doi":"10.1109/WINCOM55661.2022.9966464","DOIUrl":null,"url":null,"abstract":"This paper deals with a saliency-based no-reference (NR) method for 3D point cloud (PC) quality assessment. For this purpose, we firstly compute 3D visual saliency map for each distorted point cloud. Then, we use a threshold-based filter to select the most salient points. From these, we extract both geometrical a perceptual attributes. Estimates of their statistical properties (Entropy, Standard deviation, Skewness, Kurtosis, Median and Mean) form a features vector. In the end, the Support vector regressor (SVR) is utilized for the characteristics regression and the quality score prediction. To validate our method, a set of experiments are conducted on an open subjective colored point cloud dataset (SJTU-PCQA). Results show that the suggested method exceeds some competing methods accord-ina to correlation with average opinion score.","PeriodicalId":128342,"journal":{"name":"2022 9th International Conference on Wireless Networks and Mobile Communications (WINCOM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Wireless Networks and Mobile Communications (WINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WINCOM55661.2022.9966464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a saliency-based no-reference (NR) method for 3D point cloud (PC) quality assessment. For this purpose, we firstly compute 3D visual saliency map for each distorted point cloud. Then, we use a threshold-based filter to select the most salient points. From these, we extract both geometrical a perceptual attributes. Estimates of their statistical properties (Entropy, Standard deviation, Skewness, Kurtosis, Median and Mean) form a features vector. In the end, the Support vector regressor (SVR) is utilized for the characteristics regression and the quality score prediction. To validate our method, a set of experiments are conducted on an open subjective colored point cloud dataset (SJTU-PCQA). Results show that the suggested method exceeds some competing methods accord-ina to correlation with average opinion score.
基于感知特征学习的显著性点云质量评价方法
研究了一种基于显著性的三维点云质量评价的无参考方法。为此,我们首先计算每个扭曲点云的三维视觉显著性图。然后,我们使用基于阈值的过滤器来选择最显著的点。从中,我们提取几何属性和感知属性。它们的统计属性(熵、标准差、偏度、峰度、中位数和平均值)的估计形成一个特征向量。最后,利用支持向量回归器(SVR)进行特征回归和质量评分预测。为了验证我们的方法,在开放的主观彩色点云数据集(SJTU-PCQA)上进行了一组实验。结果表明,根据与平均意见得分的相关性,该方法优于一些竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信