{"title":"Experimental Modeling of the Formation of the Metallic Core of the Moon by the Method of High-Temperature Centrifuges","authors":"Lebedev Evgeny Borisovich, Averin Viacheslav Vasilyevich, Lukanin Oleg Alexandrovich","doi":"10.11648/J.SJAC.20190703.12","DOIUrl":null,"url":null,"abstract":"At early stages of the formation of planetary bodies, silicate, metallic, and sulfide phases, which have been formed in the course of the partial or complete fusion of the initial planetary substance, were subject to a gravitational differentiation. The latter is related to the separation of the crystalline and molten phases in density and composition. Althose in recent years a number of papers deal with the experimental and theoretical determination of the processes of the percalation of metallic melts through the crystalline silicate matrix and the physical properties of the metallic and sulfide melts. For the Moon, the problem of the existence of the metallic or sulfide core still remains unsolved. There is stil the nessity of further investigation in this direction. The possible origin of the Moon’s metallic core at the precipitation of iron-sulfide phases during the partial melting of ultramafic material under various redox conditions was experimentally modeled by partially melting the model system olivine (85 wt %)+ ferrobasalt (10 wt %)+ metallic phase Fe95S5 (5 wt %) in a high-temperature centrifuge at 1430-1450°C.","PeriodicalId":374350,"journal":{"name":"Science Journal of Analytical Chemistry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAC.20190703.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
At early stages of the formation of planetary bodies, silicate, metallic, and sulfide phases, which have been formed in the course of the partial or complete fusion of the initial planetary substance, were subject to a gravitational differentiation. The latter is related to the separation of the crystalline and molten phases in density and composition. Althose in recent years a number of papers deal with the experimental and theoretical determination of the processes of the percalation of metallic melts through the crystalline silicate matrix and the physical properties of the metallic and sulfide melts. For the Moon, the problem of the existence of the metallic or sulfide core still remains unsolved. There is stil the nessity of further investigation in this direction. The possible origin of the Moon’s metallic core at the precipitation of iron-sulfide phases during the partial melting of ultramafic material under various redox conditions was experimentally modeled by partially melting the model system olivine (85 wt %)+ ferrobasalt (10 wt %)+ metallic phase Fe95S5 (5 wt %) in a high-temperature centrifuge at 1430-1450°C.