A Text Filtering Based Approach to Classify Bug Injected and Fixed Changes

A. Yamada, O. Mizuno
{"title":"A Text Filtering Based Approach to Classify Bug Injected and Fixed Changes","authors":"A. Yamada, O. Mizuno","doi":"10.1109/IIAI-AAI.2014.141","DOIUrl":null,"url":null,"abstract":"Approaches to detect fault-prone modules have been studied for a long time. As one of these approaches, we proposed a technique using a text filtering technique. We assume that bugs relate to words and context that are contained in a software module. Our technique treats a module as text information. Based on the dictionary which was learned by classifying modules which induce bugs, the bug inducing probability over a target module is calculated, and it judges whether the given module is a fault-prone module. The predictive granularity of this technique is a module. In this study, we aimed at prediction with the finer granularity of the portion which induces a bug. Specifically, we tried to predict bug inducing changes by using source code differences of bug inducing changes and previous changes and a text filtering technique. Similarly, we tried to bug fixing predict by using source code differences of bug fixing changes and previous changes and a text filtering technique. To show the effectiveness of our approach, we conducted two experiments and compared our approach with fault-prone filtering by applying it to two open source projects, and obtained higher accuracy.","PeriodicalId":432222,"journal":{"name":"2014 IIAI 3rd International Conference on Advanced Applied Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IIAI 3rd International Conference on Advanced Applied Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2014.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Approaches to detect fault-prone modules have been studied for a long time. As one of these approaches, we proposed a technique using a text filtering technique. We assume that bugs relate to words and context that are contained in a software module. Our technique treats a module as text information. Based on the dictionary which was learned by classifying modules which induce bugs, the bug inducing probability over a target module is calculated, and it judges whether the given module is a fault-prone module. The predictive granularity of this technique is a module. In this study, we aimed at prediction with the finer granularity of the portion which induces a bug. Specifically, we tried to predict bug inducing changes by using source code differences of bug inducing changes and previous changes and a text filtering technique. Similarly, we tried to bug fixing predict by using source code differences of bug fixing changes and previous changes and a text filtering technique. To show the effectiveness of our approach, we conducted two experiments and compared our approach with fault-prone filtering by applying it to two open source projects, and obtained higher accuracy.
一种基于文本过滤的Bug注入与修正变更分类方法
检测易故障模块的方法已经研究了很长时间。作为这些方法之一,我们提出了一种使用文本过滤技术的技术。我们假设错误与包含在软件模块中的单词和上下文有关。我们的技术将模块视为文本信息。通过对诱发bug的模块进行分类学习得到的字典,计算目标模块上的bug诱发概率,并判断该模块是否为易故障模块。这种技术的预测粒度是一个模块。在这项研究中,我们的目标是用更细的粒度来预测引起bug的部分。具体来说,我们试图通过使用bug诱导更改和先前更改的源代码差异以及文本过滤技术来预测bug诱导更改。同样,我们尝试通过使用bug修复更改和先前更改的源代码差异以及文本过滤技术来预测bug修复。为了证明该方法的有效性,我们进行了两次实验,并将该方法应用于两个开源项目,将其与易故障过滤进行了比较,获得了更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信