Reliability Estimations of Large Circuits in Massively-Parallel GPU-SPICE

Victor M. van Santen, H. Amrouch, J. Henkel
{"title":"Reliability Estimations of Large Circuits in Massively-Parallel GPU-SPICE","authors":"Victor M. van Santen, H. Amrouch, J. Henkel","doi":"10.1109/IOLTS.2018.8474096","DOIUrl":null,"url":null,"abstract":"SPICE simulations for reliability have special requirements. We present GPU-SPICE to serve these special requirements. First, our GPU-SPICE employs the massive parallelism found in GPUs to enable circuit simulations beyond $200K$ transistors. This is necessary to study reliability in micro-architecture components (e.g., multipliers, adders), as reliability estimations require full analogue SPICE simulations (instead of STA or other heuristics). Secondly, our GPU-SPICE can update transistor parameters during the circuit simulation, a feature necessary to model reliability degradation, which constantly reacts to circuit activity (e.g., Bias Temperature Instability reacting to $V_{gs}$ changes by increasing/decreasing $\\Delta V_{th}$ in each transistor). Lastly, our GPU-SPICE is open-source software, this ensures that it easily can be employed, adapted and extended by other researchers. Due to the massive parallelism in a GPU and performance optimizations (convergence criteria, CUDA memory management, etc.), our GPU-SPICE is up to 218x faster than its single-threaded baseline NGSPICE.","PeriodicalId":241735,"journal":{"name":"2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2018.8474096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

SPICE simulations for reliability have special requirements. We present GPU-SPICE to serve these special requirements. First, our GPU-SPICE employs the massive parallelism found in GPUs to enable circuit simulations beyond $200K$ transistors. This is necessary to study reliability in micro-architecture components (e.g., multipliers, adders), as reliability estimations require full analogue SPICE simulations (instead of STA or other heuristics). Secondly, our GPU-SPICE can update transistor parameters during the circuit simulation, a feature necessary to model reliability degradation, which constantly reacts to circuit activity (e.g., Bias Temperature Instability reacting to $V_{gs}$ changes by increasing/decreasing $\Delta V_{th}$ in each transistor). Lastly, our GPU-SPICE is open-source software, this ensures that it easily can be employed, adapted and extended by other researchers. Due to the massive parallelism in a GPU and performance optimizations (convergence criteria, CUDA memory management, etc.), our GPU-SPICE is up to 218x faster than its single-threaded baseline NGSPICE.
大规模并行GPU-SPICE中大型电路的可靠性估计
SPICE仿真对可靠性有特殊要求。我们提出GPU-SPICE来满足这些特殊要求。首先,我们的GPU-SPICE采用gpu中的大规模并行性来实现超过20万美元晶体管的电路模拟。这对于研究微架构组件(例如,乘法器,加法器)的可靠性是必要的,因为可靠性估计需要完全模拟SPICE模拟(而不是STA或其他启发式方法)。其次,我们的GPU-SPICE可以在电路仿真期间更新晶体管参数,这是模拟可靠性退化所必需的特征,可靠性退化不断地对电路活动做出反应(例如,偏置温度不稳定性通过增加/减少每个晶体管中的$\ δ V_{th}$来响应$V_{gs}$变化)。最后,我们的GPU-SPICE是开源软件,这确保了它可以很容易地被其他研究人员使用、调整和扩展。由于GPU的大规模并行性和性能优化(收敛标准,CUDA内存管理等),我们的GPU- spice比单线程基准NGSPICE快高达218倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信