Influence of surface acoustic waves induced acoustic streaming on the kinetics of electrochemical reactions

S. Tietze, J. Schlemmer, G. Lindner
{"title":"Influence of surface acoustic waves induced acoustic streaming on the kinetics of electrochemical reactions","authors":"S. Tietze, J. Schlemmer, G. Lindner","doi":"10.1117/12.2033694","DOIUrl":null,"url":null,"abstract":"The kinetics of electrochemical reactions is controlled by diffusion processes of charge carriers across a boundary layer between the electrode and the electrolyte, which result in a shielding of the electric field inside the electrolyte and a concentration gradient across this boundary layer. In accumulators the diffusion rate determines the rather long time needed for charging, which is a major drawback for electric mobility. This diffusion boundary can be removed by acoustic streaming in the electrolyte induced by surface acoustic waves propagating of the electrode, which results in an increase of the charging current and thus in a reduction of the time needed for charging. For a quantitative study of the influence of acoustic streaming on the charge transport an electropolishing cell with vertically oriented copper electrodes and diluted H3PO4-Propanol electrolytes were used. Lamb waves with various excitation frequencies were exited on the anode with different piezoelectric transducers, which induced acoustic streaming in the overlaying electrolytic liquid. An increase of the polishing current of up to approximately 100 % has been obtained with such a set-up.","PeriodicalId":334178,"journal":{"name":"Smart Materials, Nano-, and Micro- Smart Systems","volume":"8923 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials, Nano-, and Micro- Smart Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2033694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The kinetics of electrochemical reactions is controlled by diffusion processes of charge carriers across a boundary layer between the electrode and the electrolyte, which result in a shielding of the electric field inside the electrolyte and a concentration gradient across this boundary layer. In accumulators the diffusion rate determines the rather long time needed for charging, which is a major drawback for electric mobility. This diffusion boundary can be removed by acoustic streaming in the electrolyte induced by surface acoustic waves propagating of the electrode, which results in an increase of the charging current and thus in a reduction of the time needed for charging. For a quantitative study of the influence of acoustic streaming on the charge transport an electropolishing cell with vertically oriented copper electrodes and diluted H3PO4-Propanol electrolytes were used. Lamb waves with various excitation frequencies were exited on the anode with different piezoelectric transducers, which induced acoustic streaming in the overlaying electrolytic liquid. An increase of the polishing current of up to approximately 100 % has been obtained with such a set-up.
表面声波诱导声流对电化学反应动力学的影响
电化学反应的动力学是由电荷载流子在电极和电解质之间的边界层上的扩散过程控制的,这导致了电解质内部电场的屏蔽和在该边界层上的浓度梯度。在蓄电池中,扩散速率决定了充电所需的相当长的时间,这是电动汽车的一个主要缺点。这种扩散边界可以通过电极传播的表面声波在电解质中引起的声流来消除,这导致充电电流的增加,从而减少了充电所需的时间。为了定量研究声流对电荷输运的影响,采用垂直定向铜电极和稀释的h3po4 -丙醇电解质进行电抛光电池。采用不同的压电换能器在阳极上激发不同频率的兰姆波,使电解液产生声流。在这种设置下,抛光电流增加了大约100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信