Characterization of TSV etch from a sustainability standpoint

Osakpolo Isowamwen, N. Marchack, D. Koty, Qingyun Yang, Hien Nguyen, S. Molis, S. Lefevre, M. Hopstaken, A. Metz, Jeffrey C. Shearer, R. Bruce
{"title":"Characterization of TSV etch from a sustainability standpoint","authors":"Osakpolo Isowamwen, N. Marchack, D. Koty, Qingyun Yang, Hien Nguyen, S. Molis, S. Lefevre, M. Hopstaken, A. Metz, Jeffrey C. Shearer, R. Bruce","doi":"10.1117/12.2658564","DOIUrl":null,"url":null,"abstract":"The recent passing of the CHIPS act has highlighted the semiconductor industry as a driver of innovation. Simultaneously, environmental legislation regarding per- and polyfluoroalkylated substances (PFAS) usage has become a major focus in both the US and EU, which has potential implications for many hydro- and perfluorocarbon (HFC/PFC) gases currently used in semiconductor manufacturing. High-aspect ratio (HAR) etch processes are a critical component of two high-growth manufacturing areas (packaging and solid-state memory), however, they are significant consumers of HFC/PFC chemistries due to the vertical scale of the features involved. This paper analyzes reduced gas flow effects in a HAR through-silicon via (TSV) etch process, with the aim of improving the sustainability of future processes through an improved mechanistic understanding. We demonstrate a cyclic C4F8 /SF6 TSV process with ~90% ER and comparable sidewall roughness using 50% of the SF6 flow rate and 60% of the passivation time. We also show through TOF-SIMS analysis a depth dependence of the sulfur and fluorocarbon concentrations on the TSV sidewall which varies with gas flow rate, providing further insight into the mechanisms associated with HAR etching.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recent passing of the CHIPS act has highlighted the semiconductor industry as a driver of innovation. Simultaneously, environmental legislation regarding per- and polyfluoroalkylated substances (PFAS) usage has become a major focus in both the US and EU, which has potential implications for many hydro- and perfluorocarbon (HFC/PFC) gases currently used in semiconductor manufacturing. High-aspect ratio (HAR) etch processes are a critical component of two high-growth manufacturing areas (packaging and solid-state memory), however, they are significant consumers of HFC/PFC chemistries due to the vertical scale of the features involved. This paper analyzes reduced gas flow effects in a HAR through-silicon via (TSV) etch process, with the aim of improving the sustainability of future processes through an improved mechanistic understanding. We demonstrate a cyclic C4F8 /SF6 TSV process with ~90% ER and comparable sidewall roughness using 50% of the SF6 flow rate and 60% of the passivation time. We also show through TOF-SIMS analysis a depth dependence of the sulfur and fluorocarbon concentrations on the TSV sidewall which varies with gas flow rate, providing further insight into the mechanisms associated with HAR etching.
从可持续性的角度表征TSV蚀刻
最近通过的《芯片法案》凸显了半导体行业作为创新驱动力的地位。与此同时,有关全氟和多氟烷基化物质(PFAS)使用的环境立法已成为美国和欧盟的主要焦点,这对目前半导体制造中使用的许多氢氟碳和全氟碳(HFC/PFC)气体具有潜在影响。高纵横比(HAR)蚀刻工艺是两个高增长制造领域(封装和固态存储器)的关键组成部分,然而,由于所涉及的特性的垂直规模,它们是HFC/PFC化学品的重要消费者。本文分析了HAR通硅孔(TSV)蚀刻工艺中气体流动减少的影响,目的是通过改进机理理解来提高未来工艺的可持续性。我们演示了一种循环C4F8 /SF6 TSV工艺,使用50%的SF6流量和60%的钝化时间,具有~90%的ER和相当的侧壁粗糙度。我们还通过TOF-SIMS分析显示,硫和氟碳浓度对TSV侧壁的深度依赖关系随着气体流速的变化而变化,从而进一步深入了解与HAR蚀刻相关的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信