Efficient modeling of printed circuit boards structures for dynamic simulations

E. Zukowski, T. Kimpel, Daniel Kraetschmer, A. Roessle
{"title":"Efficient modeling of printed circuit boards structures for dynamic simulations","authors":"E. Zukowski, T. Kimpel, Daniel Kraetschmer, A. Roessle","doi":"10.1109/EUROSIME.2015.7103111","DOIUrl":null,"url":null,"abstract":"Printed circuit boards (PCB) are complex geometrical and functional systems that may be exposed to a combination of external and internal loads. In order to evaluate the dynamic behaviour of PCBs in early stages of the development process, modal finite element (FE) simulations are used. Realistic results for a wide frequency range can only be achieved if all the geometrical features, such as PCB assembly, copper layer thicknesses, prepreg structures, etc. with the appropriate material properties are taken into account. To model a printed circuit board including all details such as glass fiber-epoxy compounds and copper traces is possible, but is found to be very time-consuming. A method to model PCBs was developed taking into account the corresponding functional board layout and assembly. In order to ensure an appropriate representation of the layout-dependent local material properties for FE applications without considering the geometry in full detail, a simplified approach based on general composite theory, domain-specific mixture rules and generalized laminate theory was developed. The analytically calculated material property distributions of the PCB such as local stiffness values and densities can be transferred to the meshed geometry. To verify the developed method by comparison with experimentally achieved results, operational modal analysis (OMA) for a frequency up to 25 kHz was carried out by piezo patch transducer. It can be shown that both simulated mode shapes and natural frequencies of the non-assembled board show a very good agreement with the experimental results.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Printed circuit boards (PCB) are complex geometrical and functional systems that may be exposed to a combination of external and internal loads. In order to evaluate the dynamic behaviour of PCBs in early stages of the development process, modal finite element (FE) simulations are used. Realistic results for a wide frequency range can only be achieved if all the geometrical features, such as PCB assembly, copper layer thicknesses, prepreg structures, etc. with the appropriate material properties are taken into account. To model a printed circuit board including all details such as glass fiber-epoxy compounds and copper traces is possible, but is found to be very time-consuming. A method to model PCBs was developed taking into account the corresponding functional board layout and assembly. In order to ensure an appropriate representation of the layout-dependent local material properties for FE applications without considering the geometry in full detail, a simplified approach based on general composite theory, domain-specific mixture rules and generalized laminate theory was developed. The analytically calculated material property distributions of the PCB such as local stiffness values and densities can be transferred to the meshed geometry. To verify the developed method by comparison with experimentally achieved results, operational modal analysis (OMA) for a frequency up to 25 kHz was carried out by piezo patch transducer. It can be shown that both simulated mode shapes and natural frequencies of the non-assembled board show a very good agreement with the experimental results.
用于动态仿真的印刷电路板结构的有效建模
印刷电路板(PCB)是复杂的几何和功能系统,可能暴露在外部和内部负载的组合下。为了在开发过程的早期阶段评估pcb的动态行为,使用了模态有限元(FE)模拟。只有考虑到所有的几何特征,如PCB组件、铜层厚度、预浸料结构等,以及适当的材料特性,才能获得宽频率范围的实际结果。对包括玻璃纤维环氧化合物和铜痕迹等所有细节的印刷电路板进行建模是可能的,但发现非常耗时。提出了一种考虑相应功能板布局和装配的pcb建模方法。为了在不考虑几何结构细节的情况下,确保在有限元应用中适当地表示与布局相关的局部材料特性,提出了一种基于一般复合材料理论、特定领域混合规则和广义层压理论的简化方法。解析计算出的PCB材料特性分布,如局部刚度值和密度,可以转移到网格几何上。为了验证所开发的方法与实验结果的对比,利用压电贴片换能器进行了频率高达25 kHz的工作模态分析(OMA)。结果表明,非拼装板的模拟模态振型和固有频率与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信