On Optimal Input and Capacity of Non-Coherent Correlated MISO Channels under Per-Antenna Power Constraints

Minh N. Vu, N. Tran, H. Tuan, T. V. Nguyen, D. Nguyen
{"title":"On Optimal Input and Capacity of Non-Coherent Correlated MISO Channels under Per-Antenna Power Constraints","authors":"Minh N. Vu, N. Tran, H. Tuan, T. V. Nguyen, D. Nguyen","doi":"10.1109/CCE.2018.8465760","DOIUrl":null,"url":null,"abstract":"This paper investigates the optimal input and capacity of non-coherent correlated multiple-input singleoutput (MISO) channels in fast Rayleigh fading under per-antenna power constraints. Toward this end, we first establish the convex and compact properties of the feasible sets, and demonstrate the existence of the optimal input distribution and the uniqueness of the optimal effective magnitude input distribution. By exploiting the solutions of a quadratic optimization problem, we show that the Kuhn-Tucker condition (KTC) on the optimal inputs can be simplified to a single dimension. As a result, we can apply the Identity Theorem to show the discrete and finite nature of the optimal effective magnitude distribution. By using this distribution, we then construct a finite and discrete optimal input vector distribution. The use of this input allows us to determine precisely the capacity gain of MISO over SISO via the phase solutions of a non-convex constrained quadratic optimization problem on a sphere. These phase solutions can be calculated effectively via a proposed penalized optimization algorithm.","PeriodicalId":118716,"journal":{"name":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2018.8465760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the optimal input and capacity of non-coherent correlated multiple-input singleoutput (MISO) channels in fast Rayleigh fading under per-antenna power constraints. Toward this end, we first establish the convex and compact properties of the feasible sets, and demonstrate the existence of the optimal input distribution and the uniqueness of the optimal effective magnitude input distribution. By exploiting the solutions of a quadratic optimization problem, we show that the Kuhn-Tucker condition (KTC) on the optimal inputs can be simplified to a single dimension. As a result, we can apply the Identity Theorem to show the discrete and finite nature of the optimal effective magnitude distribution. By using this distribution, we then construct a finite and discrete optimal input vector distribution. The use of this input allows us to determine precisely the capacity gain of MISO over SISO via the phase solutions of a non-convex constrained quadratic optimization problem on a sphere. These phase solutions can be calculated effectively via a proposed penalized optimization algorithm.
单天线功率约束下非相干相关MISO信道的最优输入和容量
本文研究了在单天线功率约束下,非相干相关多输入单输出(MISO)信道在快速瑞利衰落中的最优输入和容量。为此,我们首先建立了可行集的凸性和紧性,证明了最优输入分布的存在性和最优有效量输入分布的唯一性。通过利用一个二次优化问题的解,我们证明了最优输入的库恩-塔克条件(KTC)可以简化为一个单维。因此,我们可以应用恒等定理来说明最优有效幅度分布的离散性和有限性。利用这个分布,我们构造了一个有限离散的最优输入向量分布。利用这一输入,我们可以通过球面上非凸约束二次优化问题的相位解精确地确定MISO在SISO上的容量增益。通过提出的惩罚优化算法可以有效地计算出这些相位解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信