A Review-and-Reviewer based approach for Fake Review Detection

Janhavi Bhopale, Rugved Bhise, Arthav Mane, K. Talele
{"title":"A Review-and-Reviewer based approach for Fake Review Detection","authors":"Janhavi Bhopale, Rugved Bhise, Arthav Mane, K. Talele","doi":"10.1109/icecct52121.2021.9616697","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to fake review detection, essentially for online hotel reviews, by combining the review-based approach and reviewer-based approach. Different Natural Language Processing techniques such as tokenization, lemmatization, vectorization, etc. are used to extract insightful features from the review text data. After text mining, the data is used to train different classification models using machine learning algorithms that detect fake reviews. After evaluating the models, a comparison is made based on the performance metrics. Furthermore, a web based user interface is created to provide a platform that combines the knowledge of the input user information with the chosen machine learning model to perform fake review detection on the input data.","PeriodicalId":155129,"journal":{"name":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecct52121.2021.9616697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an approach to fake review detection, essentially for online hotel reviews, by combining the review-based approach and reviewer-based approach. Different Natural Language Processing techniques such as tokenization, lemmatization, vectorization, etc. are used to extract insightful features from the review text data. After text mining, the data is used to train different classification models using machine learning algorithms that detect fake reviews. After evaluating the models, a comparison is made based on the performance metrics. Furthermore, a web based user interface is created to provide a platform that combines the knowledge of the input user information with the chosen machine learning model to perform fake review detection on the input data.
一种基于评审和审稿人的虚假评论检测方法
本文通过结合基于评论的方法和基于评论者的方法,提出了一种检测虚假评论的方法,主要用于在线酒店评论。使用不同的自然语言处理技术,如标记化、词序化、矢量化等,从评审文本数据中提取有见地的特征。在文本挖掘之后,数据被用来训练不同的分类模型,使用机器学习算法来检测虚假评论。在评估模型之后,根据性能指标进行比较。此外,还创建了一个基于web的用户界面,以提供一个平台,该平台将输入用户信息的知识与所选择的机器学习模型相结合,以对输入数据执行虚假评论检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信