{"title":"Sorting Technology for Circulating Tumor Cells Based on Microfluidics","authors":"Dayu Hu, He Liu, Ye Tian, Zhi Li, Xiaoyu Cui*","doi":"10.1021/acscombsci.0c00157","DOIUrl":null,"url":null,"abstract":"<p >Circulating tumor cells (CTCs) carry reliable clinical information for the diagnosis and treatment of cancer that is a malignant disease with a high mortality rate. However, the amount of CTCs in the blood is quite low. To obtain credible clinical information, an efficient method of extracting CTCs is necessary. Microfluidic technology has proven its effectiveness on CTCs separation in recent years. Here, we present a comprehensive review of CTC sorting methods based on microfluidics. Specifically, we introduce four different microfluidic sorting methods of CTCs and compare their advantages and disadvantages. Finally, we summarize the analysis of CTCs based on microfluidics and present a prospective view of future research.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00157","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00157","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 11
Abstract
Circulating tumor cells (CTCs) carry reliable clinical information for the diagnosis and treatment of cancer that is a malignant disease with a high mortality rate. However, the amount of CTCs in the blood is quite low. To obtain credible clinical information, an efficient method of extracting CTCs is necessary. Microfluidic technology has proven its effectiveness on CTCs separation in recent years. Here, we present a comprehensive review of CTC sorting methods based on microfluidics. Specifically, we introduce four different microfluidic sorting methods of CTCs and compare their advantages and disadvantages. Finally, we summarize the analysis of CTCs based on microfluidics and present a prospective view of future research.